Multiscale multiphysics data-informed modeling for three-dimensional ocean acoustic simulation and prediction
Multiscale multiphysics data-informed modeling for three-dimensional ocean acoustic simulation and prediction
Date
2019-09-30
Authors
Duda, Timothy F.
Lin, Ying-Tsong
Newhall, Arthur E.
Helfrich, Karl R.
Lynch, James F.
Zhang, Weifeng G.
Lermusiaux, Pierre F. J.
Wilkin, John L.
Lin, Ying-Tsong
Newhall, Arthur E.
Helfrich, Karl R.
Lynch, James F.
Zhang, Weifeng G.
Lermusiaux, Pierre F. J.
Wilkin, John L.
Linked Authors
Person
Person
Person
Person
Person
Files
Alternative Title
Citable URI
As Published
Date Created
Location
DOI
10.1121/1.5126012
Related Materials
Replaces
Replaced By
Keywords
Abstract
Three-dimensional (3D) underwater sound field computations have been used for a few decades to understand sound propagation effects above sloped seabeds and in areas with strong 3D temperature and salinity variations. For an approximate simulation of effects in nature, the necessary 3D sound-speed field can be made from snapshots of temperature and salinity from an operational data-driven regional ocean model. However, these models invariably have resolution constraints and physics approximations that exclude features that can have strong effects on acoustics, example features being strong submesoscale fronts and nonhydrostatic nonlinear internal waves (NNIWs). Here, work to predict NNIW fields to improve 3D acoustic forecasts using an NNIW model nested in a tide-inclusive data-assimilating regional model is reported. The work was initiated under the Integrated Ocean Dynamics and Acoustics project. The project investigated ocean dynamical processes that affect important details of sound-propagation, with a focus on those with strong intermittency (high kurtosis) that are challenging to predict deterministically. Strong internal tides and NNIW are two such phenomena, with the former being precursors to NNIW, often feeding energy to them. Successful aspects of the modeling are reported along with weaknesses and unresolved issues identified in the course of the work.
Description
Author Posting. © Acoustical Society of America, 2019. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 146(3), (2019): 1996-2015, doi:10.1121/1.5126012.
Embargo Date
Citation
Duda, T. F., Lin, Y., Newhall, A. E., Helfrich, K. R., Lynch, J. F., Zhang, W. G., Lermusiaux, P. F. J., & Wilkin, J. (2019). Multiscale multiphysics data-informed modeling for three-dimensional ocean acoustic simulation and prediction. Journal of the Acoustical Society of America, 146(3), 1996-2015.