Newhall Arthur E.

No Thumbnail Available
Last Name
Newhall
First Name
Arthur E.
ORCID
0000-0003-1254-530X

Search Results

Now showing 1 - 20 of 33
  • Article
    Long distance passive localization of vocalizing sei whales using an acoustic normal mode approach
    (Acoustical Society of America, 2012-02) Newhall, Arthur E. ; Lin, Ying-Tsong ; Lynch, James F. ; Baumgartner, Mark F. ; Gawarkiewicz, Glen G.
    During a 2 day period in mid-September 2006, more than 200, unconfirmed but identifiable, sei whale (Balaenoptera borealis) calls were collected as incidental data during a multidisciplinary oceanography and acoustics experiment on the shelf off New Jersey. Using a combined vertical and horizontal acoustic receiving array, sei whale movements were tracked over long distances (up to tens of kilometers) using a normal mode back propagation technique. This approach uses low-frequency, broadband passive sei whale call receptions from a single-station, two-dimensional hydrophone array to perform long distance localization and tracking by exploiting the dispersive nature of propagating normal modes in a shallow water environment. The back propagation approach is examined for accuracy and application to tracking the sei whale vocalizations identified in the vertical and horizontal array signals. This passive whale tracking, combined with the intensive oceanography measurements performed during the experiment, was also used to examine sei whale movements in relation to oceanographic features observed in this region.
  • Preprint
    High-frequency side-scan sonar fish reconnaissance by autonomous underwater vehicles
    ( 2016-05) Grothues, Thomas ; Newhall, Arthur E. ; Lynch, James F. ; Vogel, Kaela S. ; Gawarkiewicz, Glen G.
    A dichotomy between depth penetration and resolution as a function of sonar frequency, draw resolution, and beam spread challenges fish target classification from sonar. Moving high-frequency sources to depth using autonomous underwater vehicles (AUVs) mitigates this and also co-locates transducers with other AUV-mounted short-range sensors to allow a holistic approach to ecological surveys. This widely available tool with a pedigree for bottom mapping is not commonly applied to fish reconnaissance and requires the development of an interpretation of pelagic reflective features, revisitation of count methods, image-processing rather than wave-form recognition for automation, and an understanding of bias. In a series of AUV mission test cases, side-scan sonar (600 and 900 kHz) returns often resolved individual school members, spacing, size, behavior, and (infrequently) species from anatomical features and could be intuitively classified by ecologists — but also produced artifacts. Fish often followed the AUV and thus were videographed, but in doing so removed themselves from the sonar aperture. AUV-supported high-frequency side-scan holds particular promise for survey of scarce, large species or for synergistic investigation of predators and their prey because the spatial scale of observations may be similar to those of predators.
  • Technical Report
    Preliminary acoustic and oceanographic observations from the ASIAEX 2001 South China Sea Experiment
    (Woods Hole Oceanographic Institution, 2001-09) Newhall, Arthur E. ; Costello, Lawrence ; Duda, Timothy F. ; Dunn, James M. ; Gawarkiewicz, Glen G. ; Irish, James D. ; Kemp, John N. ; McPhee, Neil M. ; Liberatore, Stephen P. ; Lynch, James F. ; Ostrom, William M. ; Schroeder, Ted ; Trask, Richard P. ; von der Heydt, Keith
    The Asian Seas International Experiment (ASIAEX) was a very successful scientific collaboration between the United States of America (USA), the People’s Republic of China (PRC), Taiwan (ROC), the Republic of Korea (ROK), Japan, Russia, and Singapore. Preliminary field experiments associated with ASIAEX began in spring of 2000. The main experiments were performed in April-August, 2001. The scientific plan called for two major acoustics experiments, the first a bottom interaction experiment in the East China Sea (ECS) and the second a volume interaction experiment in the South China Sea (SCS). In addition to the acoustics efforts, there were also extremely strong physical oceanography and geology and geophysics components to the experiments. This report will concentrate on describing the moored component of the South China Sea portion of ASIAEX 2001 performed from the Taiwan Fisheries research vessel FR1 (Fisheries Researcher 1). Information on the environmental moorings deployed from the Taiwanese oceanographic research vessel OR1 (Oceanographic Researcher 1) will also be listed here for completeness, so that the reader can pursue later analyses of the data. This report does not pursue any data analyses per se.
  • Technical Report
    Winter 1993 observations of oceanography and sediment transport at the LEO-15 site
    (Woods Hole Oceanographic Institution, 1995-12) Irish, James D. ; Lynch, James F. ; Newhall, Arthur E. ; Witzell, Nick ; Traykovski, Peter A. ; Glenn, Scott M.
    The NOAA National Underseas Research Program at Rutgers University is establishing a Long-term Ecosystem Observatory off New Jersey in 15 meters of water. As part of a bottom boundary layer study at this site, WHOI deployed a bottom instrument frame during the winter of 1993-94. The bottom instrument carried a current meter, a vertical array of optical back scattering sensors, temperature, pressure and conductivity sensors and an Acoustical Backscattering Sensor. The deployment was partially successful as the acoustic system failed. The other instrumentation worked well for 3 weeks returning data on winter conditions at the site. The extreme winter waves ended the experiment by tipping the instrument over on its side. The optical instrumentation was calibrated with sediment from the site, and the results from the experiment presented.
  • Technical Report
    Acoustic and oceanographic observations collected during the Nomans Island experiment in Spring 2017
    (Woods Hole Oceanographic Institution, 2020-07) Johnson, Hansen D. ; Newhall, Arthur E. ; Lin, Ying-Tsong ; Baumgartner, Mark F.
    The Woods Hole Oceanographic Institution (WHOI) has developed a digital acoustic monitoring (DMON) instrument and low-frequency detection and classification system (LFDCS) to detect and classify baleen whales in near real-time from autonomous platforms. This document provides a detailed description of the data, sensors, and research activities pertaining to the Nomans Island experiment, which was designed to evaluate the range-dependent accuracy of the DMON/LFDCS on mobile and fixed platforms. The experiment took place over a 4-week period (28 Feb to 31 Mar) in the spring of 2017 at a shallow (30m) site approximately 15 km Southwest of Martha’s Vineyard, USA. A DMON/LFDCS-equipped Slocum glider was deployed alongside an extant DMON/LFDCS moored buoy to provide the means to compare system performance between platforms. Vertical and horizontal hydrophone line arrays were deployed in the same area to facilitate call localization. A short transmission loss trial was conducted shortly after the array deployments. The Slocum glider and several sensors mounted to the arrays provided environmental data to characterize variability in water column structure and sound speed during the study period.
  • Article
    Acoustic ducting, reflection, refraction, and dispersion by curved nonlinear internal waves in shallow water
    (IEEE Oceanic Engineering Society, 2010-02-08) Lynch, James F. ; Lin, Ying-Tsong ; Duda, Timothy F. ; Newhall, Arthur E.
    Nonlinear internal waves in shallow water have been shown to be effective ducts of acoustic energy, through theory, numerical modeling, and experiment. To date, most work on such ducting has concentrated on rectilinear internal wave ducts or those with very slight curvature. In this paper, we examine the acoustic effects of significant curvature of these internal waves. (By significant curvature, we mean lateral deviation of the internal wave duct by more than half the spacing between internal waves over an acoustic path, giving a transition from ducting to antiducting.) We develop basic analytical models of these effects, employ fully 3-D numerical models of sound propagation and scattering, and examine simultaneous acoustical and oceanographic data from the 2006 Shallow Water Experiment (SW06). It will be seen that the effects of curvature should be evident in the mode amplitudes and arrival angles, and that observations are consistent with curvature, though with some possible ambiguity with other scattering mechanisms.
  • Article
    Experimental and numerical studies of sound propagation over a submarine canyon northeast of Taiwan
    (IEEE, 2015-01-09) Lin, Ying-Tsong ; Duda, Timothy F. ; Emerson, Chris ; Gawarkiewicz, Glen G. ; Newhall, Arthur E. ; Calder, Brian ; Lynch, James F. ; Abbot, Philip A. ; Yang, Yiing-Jang ; Jan, Sen
    A study of sound propagation over a submarine canyon northeast of Taiwan was made using mobile acoustic sources during a joint ocean acoustic and physical oceanographic experiment in 2009. The acoustic signal levels (equivalently, transmission losses) are reported here, and numerical models of 3-D sound propagation are employed to explain the underlying physics. The data show a significant decrease in sound intensity as the source crossed over the canyon, and the numerical model provides a physical insight into this effect. In addition, the model also suggests that reflection from the canyon seabed causes 3-D sound focusing when the direction of propagation is along the canyon axis, which remains to be validated in a future experiment. Environmental uncertainties of water sound speed, bottom geoacoustic properties, and bathymetry are addressed, and the implications for sound propagation prediction in a complex submarine canyon environment are also discussed.
  • Article
    Underwater acoustics research at the Woods Hole Oceanographic Institution, 1930-1960
    (Acoustical Society of America, 2016-06-23) Lynch, James F. ; Newhall, Arthur E. ; Frosch, Robert A.
    The Woods Hole Oceanographic Institution (WHOI) was founded in 1930, and throughout its history has had a strong involvement in research into the science and applications of sound in the ocean. In terms of a brief history, three eras stand out: (1) pre-WWII, (2) WWII, and (3) the postwar years. This manuscript will focus on the history of the most influential and colorful, individuals and stories that arose during the war years. Provided are personal reminiscences, technical report details, and photos illustrating the achievements, and importance, in underwater sound research at WHOI during that time.
  • Article
    Characterization of impact pile driving signals during installation of offshore wind turbine foundations
    ( 2020-04-17) Amaral, Jennifer L. ; Miller, James H. ; Potty, Gopu R. ; Vigness-Raposa, Kathleen J. ; Frankel, Adam S. ; Lin, Ying-Tsong ; Newhall, Arthur E. ; Wilkes, Daniel R. ; Gavrilov, Alexander N.
    Impact pile driving creates intense, impulsive sound that radiates into the surrounding environment. Piles driven vertically into the seabed generate an azimuthally symmetric underwater sound field whereas piles driven on an angle will generate an azimuthally dependent sound field. Measurements were made during pile driving of raked piles to secure jacket foundation structures to the seabed in waters off the northeastern coast of the U.S. at ranges between 500 m and 15 km. These measurements were analyzed to investigate variations in rise time, decay time, pulse duration, kurtosis, and sound received levels as a function of range and azimuth. Variations in the radiated sound field along opposing azimuths resulted in differences in measured sound exposure levels of up to 10 dB and greater due to the pile rake as the sound propagated in range. The raked pile configuration was modeled using an equivalent axisymmetric FEM model to describe the azimuthally dependent measured sound fields. Comparable sound level differences in the model results confirmed that the azimuthal discrepancy observed in the measured data was due to the inclination of the pile being driven relative to the receiver.
  • Article
    Estimate of the bottom compressional wave speed profile in the northeastern South China Sea using "Sources of Opportunity"
    (IEEE, 2004-10) Lin, Ying-Tsong ; Lynch, James F. ; Chotiros, Nicholas P. ; Chen, Chi-Fang ; Newhall, Arthur E. ; Turgut, Altan ; Schock, Steven G. ; Chiu, Ching-Sang ; Bartek, Louis R. ; Liu, Char-Shine
    The inversion of a broad-band "source of opportunity" signal for bottom geoacoustic parameters in the northeastern South China Sea (SCS) is presented, which supplements the towed source and chirp sonar bottom inversions that were performed as part of the Asian Seas International Acoustics Experiment (ASIAEX). This source of opportunity was most likely a "dynamite fishing" signal, which has sufficient low-frequency content (5-500 Hz) to make it complimentary to the somewhat higher frequency J-15-3 towed source (50-260 Hz) signals and the much higher frequency (1-10 kHz) chirp signals. This low frequency content will penetrate deeper into the bottom, thus extending the other inverse results. Localization of the source is discussed, using both a horizontal array for azimuthal steering and the "water wave" part of the pulse arrival for distance estimation. A linear broad-band inverse is performed, and three new variants of the broad-band inverse, based on: 1) the Airy phase; 2) the cutoff frequency; and 3) a range-dependent medium are presented. A multilayer model of the bottom compressional wave speed is obtained, and error estimates for this model are shown, both for the range-independent approximation to the waveguide and for the range-dependent waveguide. Directions for future research are discussed.
  • Article
    Acoustic detection range of right whale upcalls identified in near-real time from a moored buoy and a Slocum glider
    (Acoustical Society of America, 2022-04-13) Johnson, Hansen D. ; Taggart, Christopher T. ; Newhall, Arthur E. ; Lin, Ying-Tsong ; Baumgartner, Mark F.
    The goal of this study was to characterize the detection range of a near real-time baleen whale detection system, the digital acoustic monitoring instrument/low-frequency detection and classification system (DMON/LFDCS), equipped on a Slocum glider and a moored buoy. As a reference, a hydrophone array was deployed alongside the glider and buoy at a shallow-water site southwest of Martha's Vineyard (Massachusetts, USA) over a four-week period in spring 2017. A call-by-call comparison between North Atlantic right whale upcalls localized with the array (n = 541) and those detected by the glider or buoy was used to estimate the detection function for each DMON/LFDCS platform. The probability of detection was influenced by range, ambient noise level, platform depth, detection process, review protocol, and calling rate. The conservative analysis of near real-time pitch tracks suggested that, under typical conditions, a 0.33 probability of detection of a single call occurred at 6.2 km for the buoy and 8.6–13.4 km for the glider (depending on glider depth), while a 0.10 probability of detection of a single call occurred at 14.4 m for the buoy and 22.6–27.5 km for the glider. Probability of detection is predicted to increase substantially at all ranges if more than one call is available for detection.
  • Article
    On whether azimuthal isotropy and alongshelf translational invariance are present in low-frequency acoustic propagation along the New Jersey shelfbreak
    (Acoustical Society of America, 2012-02) Lynch, James F. ; Emerson, Chris ; Abbot, Philip A. ; Gawarkiewicz, Glen G. ; Newhall, Arthur E. ; Lin, Ying-Tsong ; Duda, Timothy F.
    To understand the issues associated with the presence (or lack) of azimuthal isotropy and horizontal (along isobath) invariance of low-frequency (center frequencies of 600 Hz and 900 Hz) acoustic propagation in a shelfbreak environment, a series of experiments were conducted under the Autonomous Wide-Aperture Cluster for Surveillance component of the Shallow Water 2006 experiment. Transmission loss data reported here were from two mobile acoustic sources executing (nearly) circular tracks transmitting to sonobuoy receivers in the circle centers, and from one 12.5 km alongshelf acoustic track. The circle radii were 7.5 km. Data are from September 8, 2006. Details of the acoustic and environmental measurements are presented. Simple analytic and computer models are used to assess the variability expected due to the ocean and seabed conditions encountered. A comparison of model results and data is made, which shows preliminary consistency between the data and the models, but also points towards further work that should be undertaken specifically in enlarging the range and frequency parameter space, and in looking at integrated transmission loss.
  • Article
    Low-frequency broadband sound source localization using an adaptive normal mode back-propagation approach in a shallow-water ocean
    (Acoustical Society of America, 2012-02) Lin, Ying-Tsong ; Newhall, Arthur E. ; Lynch, James F.
    A variety of localization methods with normal mode theory have been established for localizing low frequency (below a few hundred Hz), broadband signals in a shallow water environment. Gauss-Markov inverse theory is employed in this paper to derive an adaptive normal mode back-propagation approach. Joining with the maximum a posteriori mode filter, this approach is capable of separating signals from noisy data so that the back-propagation will not have significant influence from the noise. Numerical simulations are presented to demonstrate the robustness and accuracy of the approach, along with comparisons to other methods. Applications to real data collected at the edge of the continental shelf off New Jersey, USA are presented, and the effects of water column fluctuations caused by nonlinear internal waves and shelfbreak front variability are discussed.
  • Technical Report
    Acoustic and oceanographic observations and configuration information for the WHOI moorings from the SW06 experiment
    (Woods Hole Oceanographic Institution, 2007-05) Newhall, Arthur E. ; Duda, Timothy F. ; von der Heydt, Keith ; Irish, James D. ; Kemp, John N. ; Lerner, Steven A. ; Liberatore, Stephen P. ; Lin, Ying-Tsong ; Lynch, James F. ; Maffei, Andrew R. ; Morozov, Andrey K. ; Shmelev, Alexey A. ; Sellers, Cynthia J. ; Witzell, Warren E.
    This document describes data, sensors, and other useful information pertaining to the moorings that were deployed from the R/V Knorr from July 24th to August 4th, 2006 in support of the SW06 experiment. The SW06 experiment was a large, multi-disciplinary effort performed 100 miles east of the New Jersey coast. A total of 62 acoustic and oceanographic moorings were deployed and recovered. The moorings were deployed in a “T” geometry to create an along-shelf path along the 80 meter isobath and an across-shelf path starting at 600 meters depth and going shoreward to a depth of 60 meters. A cluster of moorings was placed at the intersection of the two paths to create a dense sensor-populated area to measure a 3-dimensional physical oceanography. Environmental moorings were deployed along both along-shelf and across-shelf paths to measure the physical oceanography along those paths. Moorings with acoustic sources were placed at the outer ends of the “T” to propagate various signals along these paths. Five single hydrophone receivers were positioned on the across shelf path and a vertical and horizontal hydrophone array was positioned at the intersection of the “T” to get receptions from all the acoustics assets that were used during SW06.
  • Technical Report
    Real-time tomography mooring
    (Woods Hole Oceanographic Institution, 1992-06) Lynch, James F. ; Frye, Daniel E. ; Peal, Kenneth R. ; Liberatore, Stephen P. ; Kery, Sean M. ; Hobart, Edward ; Newhall, Arthur E. ; Smith, Stephen P.
    A real-time tomography system has been developed which combines ocean acoustic tomography with satellite-based time keeping and satellite telemetry. The basis of the system is the acoustic tomography transceiver and its associated acoustic navigation grid. To this basic system, a link to the surface has been added to provide a pathway for telemetry of the tomographic data to shore and a downlink for satellite-derived time which is used to correct the transceiver's clock. The surface buoy contains a GPS receiver, clock comparator, system controller and multiple ID Argos transmitters. Processed tomography signals, transceiver location data time, time drift and surface buoy engineering data are transmitted to satellite using a total of 32 data buffers transmitted every eight minutes. The report describes the real-time tomography system in detail, with particular emphasis on the modifications implemented to convert the standard tomography instrument to a real-time oceanographic tool.
  • Article
    Shallow Water ’06 : a joint acoustic propagation/nonlinear internal wave physics experiment
    (Oceanography Society, 2007-12) Tang, Dajun ; Moum, James N. ; Lynch, James F. ; Abbot, Philip A. ; Chapman, Ross ; Dahl, Peter H. ; Duda, Timothy F. ; Gawarkiewicz, Glen G. ; Glenn, Scott M. ; Goff, John A. ; Graber, Hans C. ; Kemp, John N. ; Maffei, Andrew R. ; Nash, Jonathan D. ; Newhall, Arthur E.
    Since the end of the Cold War, the US Navy has had an increasing interest in continental shelves and slopes as operational areas. To work in such areas requires a good understanding of ocean acoustics, coastal physical oceanography, and, in the modern era, autonomous underwater vehicle (AUV) operations.
  • Article
    Internal tidal modal ray refraction and energy ducting in baroclinic Gulf Stream currents
    (American Meteorological Society, 2018-08-30) Duda, Timothy F. ; Lin, Ying-Tsong ; Buijsman, Maarten C. ; Newhall, Arthur E.
    Upstream mean semidiurnal internal tidal energy flux has been found in the Gulf Stream in hydrodynamical model simulations of the Atlantic Ocean. A major source of the energy in the simulations is the south edge of Georges Bank, where strong and resonant Gulf of Maine tidal currents are found. An explanation of the flux pattern within the Gulf Stream is that internal wave modal rays can be strongly redirected by baroclinic currents and even trapped (ducted) by current jets that feature strong velocities above the thermocline that are directed counter to the modal wavenumber vector (i.e., when the waves travel upstream). This ducting behavior is analyzed and explained here with ray-based wave propagation studies for internal wave modes with anisotropic wavenumbers, as occur in mesoscale background flow fields. Two primary analysis tools are introduced and then used to analyze the strong refraction and ducting: the generalized Jones equation governing modal properties and ray equations that are suitable for studying waves with anisotropic wavenumbers.
  • Article
    Impacts of ocean warming on acoustic propagation over continental shelf and slope regions
    (The Oceanography Society, 2018-08-13) Lynch, James F. ; Gawarkiewicz, Glen G. ; Lin, Ying-Tsong ; Duda, Timothy F. ; Newhall, Arthur E.
    Gradients of heat and salt affect the propagation of sound energy in the ocean. Anticipated changes in oceanic conditions will alter thermohaline conditions globally, thus altering sound propagation. In this context, we examine changes in shallow- water propagation. Because these waters are close to the surface, they will be the earliest to change as the atmospheric state and radiative conditions change. We compare current and possible future propagation patterns near fronts and across fronts on continental shelves. Changes in sound pathways between the deep ocean and coastal regions are also examined, including an example from the Arctic Ocean.
  • Technical Report
    Preliminary acoustic and oceanographic observations from the winter Primer experiment
    (Woods Hole Oceanographic Institution, 1998-10) Newhall, Arthur E. ; von der Heydt, Keith ; Sperry, Brian J. ; Gawarkiewicz, Glen G. ; Lynch, James F.
    A joint acoustics and physical oceanography experiment was conducted in the winter of 1997 on the shell break and continental slope south of New England in the Middle Atlantic Bight (figure 1). This experiment, Primer4, provided a seasonal contrast to the previous summer Primer3 experiment and had the same goals and tasks: to study the thermohaline variability and structure of the shelfbreak front and its effects on acoustic propagation. To accomplish the linked oceanographic and acoustic objectives of this experiment, a combination of measurements (fig 2) were made. Seasoar hydrography, shipboard ADCP measurements, Satellite IR sea surface temperature field observations, and AXT drops were employed to study the larger scale oceanographic fields. To study the finer scale, which includes internal waves, a number of rapid-sampling thermistor strings and current meters, including a moored, upward looking ADCP, were deployed. The acoustics components consisted of three 400 Hz tomography transceivers, a 224 Hz source and two hydrophone arrays. To study the geoacoustic parameters in the bottom a number of SUS charges were also deployed. The field setup was approximately the same for both the summer 1996 and winter 1997 experiments; however the weather conditions and the thermal structure of the mixed layer were radically different. This report is dedicated to the data from the Winter 1997 Primer4 experiment.
  • Technical Report
    Instrumentation for open ocean aquaculture monitoring
    (Woods Hole Oceanographic Institution, 2001-10) Irish, James D. ; Carroll, Megan ; Singer, Robin C. ; Newhall, Arthur E. ; Paul, Walter ; Johnson, Craig ; Witzell, Nick ; Rice, Glen ; Fredriksson, David W.
    The Woods Hole Oceanographic Institution is assisting the University of New Hampshire by instrumenting a fish cage and mooring as part of their Open Ocean Aquaculture demonstration program in the Gulf of Maine. To understand these systems, the wave and current forcing and the response of the mooring and fish cage needs to be measured. A UNH mooring with an ADCP measured the current forcing. Tension in the mooring lines was measured by load cells deployed with the mooring during servicing in August 2000. Load cells were placed in each anchor line, and, in the NE corner, also in the two grid lines and the riser line to the fish cage. Low power recording systems were deployed on the load cell mounting bars by divers on 22 October 2000, recorded good data through January 2001, when they were turned around and redeployed. Three single load cell recorders were recovered in July 2001 and recorded though 23 June when their data storage filled. The four load cell system was recovered in March after a large winter storm, and had failed in early March. The wave forcing was measured with a wave rider buoy with a 3-axis accelerometer measuring its motion. The acceleration was integrated twice to obtain wave displacement. The system mooring contained a compliant elastic. The wave rider was deployed on 4 January 2001 and recovered on 17 March 2001 after a major Northeast storm. It recorded data throughout its deployment. The motion of the moored fish cage was measured by a motion package constructed around a 6-axis Motion-Pak and a PC-104 data system. The motion package was deployed on the fish cage from Jan into March 2001 and recorded motions thoughout without difficuly. It observed a major storm in early March where the counter weight was lost from the fish cage, and its increase in motion thereafter.