Physical Oceanography (PO)
Permanent URI for this collection
Department members investigate the dynamics and thermodynamics of ocean circulation. They work globally from the Arctic to the Antarctic and from the Strait of Gibraltar to the Philippine shelf on the full range of oceanic processes, from mixing on centimeter scales to heat balance on the global scale.
Browse
Recent Submissions
1 - 20 of 2421
-
ArticleDeeper and stronger North Atlantic Gyre during the Last Glacial Maximum(Nature Research, 2024-07-10)Subtropical gyre (STG) depth and strength are controlled by wind stress curl and surface buoyancy forcing1,2. Modern hydrographic data reveal that the STG extends to a depth of about 1 km in the Northwest Atlantic, with its maximum depth defined by the base of the subtropical thermocline. Despite the likelihood of greater wind stress curl and surface buoyancy loss during the Last Glacial Maximum (LGM)3, previous work suggests minimal change in the depth of the glacial STG4. Here we show a sharp glacial water mass boundary between 33° N and 36° N extending down to between 2.0 and 2.5 km—approximately 1 km deeper than today. Our findings arise from benthic foraminiferal δ18O profiles from sediment cores in two depth transects at Cape Hatteras (36–39° N) and Blake Outer Ridge (29–34° N) in the Northwest Atlantic. This result suggests that the STG, including the Gulf Stream, was deeper and stronger during the LGM than at present, which we attribute to increased glacial wind stress curl, as supported by climate model simulations, as well as greater glacial production of denser subtropical mode waters (STMWs). Our data suggest (1) that subtropical waters probably contributed to the geochemical signature of what is conventionally identified as Glacial North Atlantic Intermediate Water (GNAIW)5,6,7 and (2) the STG helped sustain continued buoyancy loss, water mass conversion and northwards meridional heat transport (MHT) in the glacial North Atlantic.
-
ArticleUsing shelf‐edge transport composition and sensitivity experiments to understand processes driving sea level on the Northwest European Shelf(American Geophysical Union, 2024-05-09)Variability in ocean currents, temperature and salinity drive dynamic sea level (DSL) variability on the Northwest European Shelf (NWES). It is dominated by mass variations, with steric signals relatively small. A mechanistic explanation of how ocean dynamics relates to the mass component of NWES sea level variability is required. We use regional ocean model experiments to isolate sources of variability and then investigate the effect on monthly to-interannual DSL variability together with the simulated momentum budgets along the shelfbreak. Regional (local) wind and non-regional (remote) forcing are important on the NWES. For the local wind forcing, the net mass flux onto the shelf, which drives a shelf-mean mode of DSL variability, results from a combination of surface Ekman, bottom Ekman and geostrophic flows and explains 73% of the variance in transport across the shelf-edge. The geostrophic flow is closely related to wind stress with a flow about half that of surface Ekman transport but in the opposite direction. For the remotely forced mass-flux across the shelf-edge, the geostrophic component explains 62% of the variance and bottom friction plays an important indirect role. The remotely forced variability, while relatively spatially uniform, is more important for explaining DSL variance over the western NWES. This mode of variability is sensitive to signals propagating northward via a thin strip of the southern boundary near the Portuguese coast, consistent with coastal trapped wave signals. It also appears to drive steric height in the Bay of Biscay, which is related to DSL on the shelf.
-
ArticleNear-inertial response of a salinity-stratified ocean(American Meteorological Society, 2024-08-19)We study the near-inertial response of the salinity-stratified north Bay of Bengal to monsoonal wind forcing using 6 years of hourly observations from four moorings. The mean annual energy input from surface winds to near-inertial mixed layer currents is 10–20 kJ m−2, occurring mainly in distinct synoptic “events” from April–September. A total of fifteen events are analyzed: Seven when the ocean is capped by a thin layer of low-salinity river water (fresh) and eight when it is not (salty). The average near-inertial energy input from winds is 40% higher in the fresh cases than in the salty cases. During the fresh events, 1) mixed layer near-inertial motions decay about two times faster and 2) near-inertial kinetic energy below the mixed layer is reduced by at least a factor of three relative to the salty cases. The near-inertial horizontal wavelength was measured for one fresh and one salty event; the fresh was about three times shorter initially. A linear model of near-inertial wave propagation tuned to these data reproduces 2); the thin (10 m) mixed layers during the fresh events excite high modes, which propagate more slowly than the low modes excited by the thicker (40 m) mixed layers in the salty events. The model does not reproduce 1); the rapid decay of the mixed layer inertial motions in the fresh events is not explained by the linear wave propagation at the resolved scales; a different and currently unknown set of processes is likely responsible.
-
ArticleAutumnal equinox shift in Arctic surface energy budget: Beaufort‐Chukchi Seas case study(American Geophysical Union, 2024-05-27)This study examines the annual cycle of the Surface Energy Budget (SEB) in the Beaufort-Chukchi seas, focusing on the autumn transition. Shipboard measurements from NASA's Salinity and Stratification at the Sea Ice Edge (SASSIE) experiment (8 September–2 October 2022) and satellite flux analysis for the entire 2022 were utilized to provide a comprehensive perspective of the SEB's seasonal dynamics. An important finding is the alignment of SEB’s autumnal transition with the September 22 equinox, marking the onset of prolonged Arctic darkness. This transition involved a shift from the summertime radiative heating to cooling conditions, characterized by outgoing longwave radiation surpassing incoming solar radiation and a notable increase in synoptic turbulent latent and sensible heat flux variability. The increased turbulent heat fluxes after the equinox were associated with increased occurrences of short-duration cold air outbreaks. These outbreaks seem to originate from cold mesoscale surface winds transitioning from cooling landmasses or ice caps to the warmer seas, driven by differential cooling rates between land/ice and ocean as solar irradiance declined. Turbulent heat losses, outpacing longwave emission by more than fivefold, accelerated ocean surface cooling in the subsequent 2 months, leading to the complete freeze-up of the Beaufort-Chukchi seas by late November. These findings underscore the substantial influence of astronomical seasons on the SEB, emphasizing their crucial role in Arctic climate dynamics.
-
ArticleAtmospheric fronts shaping the (Sub)Mesoscale SST-Wind coupling over the Southern Ocean: observational case(American Geophysical Union, 2024-04-18)Surface wind divergence is largely modulated by the sea surface temperature (SST) gradient through vertical momentum mixing and pressure adjustment. Here, the two mechanisms affecting the coupling strength between SST gradient and surface wind divergence are examined during an atmospheric front passage in the Southern Ocean. This event is also recorded by an uncrewed surface vehicle (USV). The reanalysis product (ERA5) revealed that downward momentum mixing is the dominant mechanism on the daily time scale. The coupling strength during the day when the atmospheric front passed over declined by 75%, compared to the adjacent days. This implies that the atmospheric front can partially attenuate the SST gradient effect on the surface wind divergence. Furthermore, a decade-long statistic also showed a decreasing trend of SST-wind coupling when the atmospheric fronts occur more. Additionally, after removing the mesoscale weather variation, the USV observations showed a remarkable SST imprint on the atmospheric boundary layer in the oceanic submesoscale regime, which denotes the scale below the deformation radius (∼16 km). The submesoscale air-sea interaction processes also displayed decreased air-sea coupling strength during atmospheric front passage. This is possible as the vertical velocity induced by the atmospheric front can compensate for the daily averaged uprising vertical velocity due to surface wind convergence. This analysis indicates that the atmospheric front can diminish the coupling between the SST gradient and surface wind divergence, which contrasts the existing statistical results showing that atmospheric fronts tend to enhance such coupling.
-
ArticleExperimental and numerical investigation of shelf flow crossing over a strait(Springer, 2024-05-20)Motivated by the phenomenon of Scotian Shelf Crossover events, the problem of a shelf flow that is interrupted by a strait is considered. Laboratory experiments in a rotating tank with barotropic and baroclinic flow over flat and sloping shelves confirm that the flow is steered by the bathymetric contours and mainly circumnavigates the gulf. In order to jump across the strait, as suggested by earlier theories, the flow must have unrealistically high Rossby numbers. However, the near bottom friction relaxes the bathymetric constraint and causes the formation of a peculiar jet crossing the strait diagonally. For the dissipation values such that a half of the transport goes around the gulf and half crosses the strait diagonally, the diagonal crossover jet becomes most evident. Numerical solutions for realistic values of the frictional parameter reproduce the results of the laboratory experiments and consideration of the actual Gulf of Maine bathymetry reproduces patterns similar to those observed by drift trajectories and in the satellite derived sea surface temperature fields.
-
ArticleBasin-dependent response of Northern Hemisphere winter blocking frequency to CO2 removal(Nature Research, 2024-05-23)Atmospheric blocking has been identified as one of the key elements of the extratropical atmospheric variabilities, controlling extreme weather events in mid-latitudes. Future projections indicate that Northern Hemisphere winter blocking frequency may decrease as CO2 concentrations increase. Here, we show that such changes may not be reversed when CO2 concentrations return to the current levels. Blocking frequency instead exhibits basin-dependent changes in response to CO2 removal. While the North Atlantic blocking frequency recovers gradually from the CO2-induced eastward shift, the North Pacific blocking frequency under the CO2 removal remains lower than its initial state. These basin-dependent blocking frequency changes result from background flow changes and their interactions with high-frequency eddies. Both high-frequency eddy and background flow changes determine North Atlantic blocking changes, whereas high-frequency eddy changes dominate the slow recovery of North Pacific blocking. Our results indicate that blocking-related extreme events in the Northern Hemisphere winter may not monotonically respond to CO2 removal.
-
ArticleCross-shelf exchange in prograde Antarctic troughs driven by offshore propagating dense water eddies(American Meteorological Society, 2024-07-31)This study examines the link between near-bottom outflows of dense water formed in Antarctic coastal polynyas and onshore intrusions of Circumpolar Deep Water (CDW) through prograde troughs cutting across the continental shelf. Numerical simulations show that the dense water outflow is primarily in the form of cyclonic eddies. The trough serves as a topographic guide that organizes the offshore-moving dense water eddies into a chain pattern. The offshore migration speed of the dense water eddies is similar to the velocity of the dense water offshore flow in the trough, which scaling analysis finds to be proportional to the reduced gravity of the dense water and the slope of the trough sidewalls and to be inversely proportional to the Coriolis parameter. Our model simulations indicate that, as these cyclonic dense water eddies move across the trough mouth into the deep ocean, they entrain CDW from offshore and carry CDW clockwise along their periphery into the trough. Subsequent cyclonic dense water eddies then entrain the intruding CDW further toward the coast along the trough. This process of recurring onshore entrainment of CDW by a topographically constrained chain of offshore-flowing dense water eddies is consistent with topographic hotspots of onshore intrusion of CDW around Antarctica identified by other studies. It can bring CDW from offshore to close to the coast and thus impact the heat flux into Antarctic coastal regions, affecting interactions among ocean, sea ice, and ice shelves.
-
ArticleVariability of Iceland Scotland overflow water across the Reykjanes Ridge: 2-years of moored observations in the Bight Fracture Zone(American Geophysical Union, 2024-05-29)This study presents the first continuous observations of Iceland Scotland Overflow Water (ISOW) passing through the Bight Fracture Zone (BFZ), the northernmost deep bathymetric channel across the Reykjanes Ridge between the Iceland and Irminger Basins in the subpolar North Atlantic. Data from two 2-year moorings, measuring temperature, salinity, and current velocity from 2015 to 2017, along with a set of deep ISOW-embedded RAFOS floats, are used to investigate ISOW transport and water property variability through the BFZ, as well as advective pathways between the Iceland and Irminger Basins. The mooring-derived record-mean ISOW transport through the BFZ was −0.59 ± 0.27 × 1e6 m3/s (westward) and varied seasonally with weaker transport in winter and stronger transport in summer. Flow direction of ISOW through the BFZ was consistently westward except in winter, when week-long flow reversals were frequently observed. The previously reported subpolar North Atlantic freshening event of the 2010s is evident in the BFZ mooring records beginning about January 2017. About one-quarter of floats deployed in ISOW at 1800-m depth upstream in the Iceland Basin show a direct advective pathway into the BFZ that appears to be primarily determined by bathymetry. Another quarter of the floats crossed over the ridge to the Irminger Sea through other gaps prior to reaching the Charlie-Gibbs Fracture Zone.
-
Article3D intrusions transport active surface microbial assemblages to the dark ocean(National Academy of Sciences, 2024-05-02)Subtropical oceans contribute significantly to global primary production, but the fate of the picophytoplankton that dominate in these low-nutrient regions is poorly understood. Working in the subtropical Mediterranean, we demonstrate that subduction of water at ocean fronts generates 3D intrusions with uncharacteristically high carbon, chlorophyll, and oxygen that extend below the sunlit photic zone into the dark ocean. These contain fresh picophytoplankton assemblages that resemble the photic-zone regions where the water originated. Intrusions propagate depth-dependent seasonal variations in microbial assemblages into the ocean interior. Strikingly, the intrusions included dominant biomass contributions from nonphotosynthetic bacteria and enrichment of enigmatic heterotrophic bacterial lineages. Thus, the intrusions not only deliver material that differs in composition and nutritional character from sinking detrital particles, but also drive shifts in bacterial community composition, organic matter processing, and interactions between surface and deep communities. Modeling efforts paired with global observations demonstrate that subduction can flux similar magnitudes of particulate organic carbon as sinking export, but is not accounted for in current export estimates and carbon cycle models. Intrusions formed by subduction are a particularly important mechanism for enhancing connectivity between surface and upper mesopelagic ecosystems in stratified subtropical ocean environments that are expanding due to the warming climate.
-
ArticleArctic September sea ice concentration biases in CMIP6 models and their relationships with other model variables(American Meteorological Society, 2024-08-06)The models that participated in the Coupled Model Intercomparison Project (CMIP) exhibit large biases in Arctic sea ice climatology that seem related to biases in seasonal atmospheric and oceanic circulations. Using historical runs of 34 CMIP6 models from 1979 to 2014, we investigate the links between the climatological sea ice concentration (SIC) biases in September and atmospheric and oceanic model climatologies. The main intermodel spread of September SIC is well described by two leading EOFs, which together explain ∼65% of its variance. The first EOF represents an underestimation or overestimation of SIC in the whole Arctic, while the second EOF describes opposite SIC biases in the Atlantic and Pacific sectors. Regression analysis indicates that the two SIC modes are closely related to departures from the multimodel mean of Arctic surface heat fluxes during summer, primarily shortwave and longwave radiation, with incoming Atlantic Water playing a role in the Atlantic sector. Local and global links with summer cloud cover, low-level humidity, upper or lower troposphere temperature/circulation, and oceanic variables are also found. As illustrated for three climate models, the local relationships with the SIC biases are mostly similar in the Arctic across the models but show varying degrees of Atlantic inflow influence. On a global scale, a strong influence of the summer atmospheric circulation on September SIC is suggested for one of the three models, while the atmospheric influence is primarily via thermodynamics in the other two. Clear links to the North Atlantic oceanic circulation are seen in one of the models.
-
ArticleGlacial isostatic adjustment reduces past and future Arctic subsea permafrost(Nature Research, 2024-05-15)Sea-level rise submerges terrestrial permafrost in the Arctic, turning it into subsea permafrost. Subsea permafrost underlies ~ 1.8 million km2 of Arctic continental shelf, with thicknesses in places exceeding 700 m. Sea-level variations over glacial-interglacial cycles control subsea permafrost distribution and thickness, yet no permafrost model has accounted for glacial isostatic adjustment (GIA), which deviates local sea level from the global mean due to changes in ice and ocean loading. Here we incorporate GIA into a pan-Arctic model of subsea permafrost over the last 400,000 years. Including GIA significantly reduces present-day subsea permafrost thickness, chiefly because of hydro-isostatic effects as well as deformation related to Northern Hemisphere ice sheets. Additionally, we extend the simulation 1000 years into the future for emissions scenarios outlined in the Intergovernmental Panel on Climate Change’s sixth assessment report. We find that subsea permafrost is preserved under a low emissions scenario but mostly disappears under a high emissions scenario.
-
ArticleWind-driven seasonal variability of deep-water overflow from the Pacific Ocean to the South China Sea(American Geophysical Union, 2024-05-26)The South China Sea (SCS) is a semi-enclosed marginal sea linked to the broader oceans via various geographically constrained channels. Beneath the main thermocline depth, Luzon Strait is the only conduit for water-mass exchanges. Observations indicate a substantial seasonal variability in the inflow transport of deep water from the Pacific Ocean. This study aims to identify and examine key drivers for such seasonal changes. It is found that seasonal variability of the deep-water transport into the SCS is primarily driven by surface wind stress. An imbalance in wind-driven exchanges of surface water between the SCS and external seas demands compensational transports in subsurface layers so that the net volume transport into the SCS is conserved, resulting in seasonal variations in deep-water overflow. Changes in Karimata Strait exert a particularly influential impact on deep-water inflow, likely due to its unique position as the sole connecting channel across the Equator.
-
ArticleWave and roller transformation over barred bathymetry(American Geophysical Union, 2024-05-04)The cross-shore transformation of breaking-wave roller momentum and energy on observed barred surfzone bathymetry is investigated with a two-phase Reynolds Averaged Navier Stokes model driven with measured incident waves. Modeled wave spectra, wave heights, and wave-driven increases in the mean water level (setup) agree well with field observations along transects extending from 5-m water depth to the shoreline. Consistent with prior results the roller forcing contributes 50%–60% to the setup, whereas the advective terms contribute ∼20%, with the contribution of bottom stress largest (up to 20%) for shallow sandbar crest depths. The model simulations suggest that an energy-flux balance between wave dissipation, roller energy, and roller dissipation is accurate. However, as little as 70% of the modeled wave energy ultimately dissipated by breaking was first transferred from the wave to the roller. Furthermore, of the energy transferred to the roller, 15%–25% is dissipated by turbulence in the water column below the roller, with the majority of energy dissipated in the aerated region or near the roller-surface interface. The contributions of turbulence to the momentum balance are sensitive to the parameterized turbulent anisotropy, which observations suggest increases with increasing turbulence intensity. Here, modeled turbulent kinetic energy dissipation decreases with increasing depth of the sandbar crest, possibly reflecting a change from plunging (on the steeper offshore slope of the bar) to spilling breakers (over the flatter bar crest and trough). Thus, using a variable roller front slope in the roller-wave energy flux balance may account for these variations in breaker type.
-
ArticleResolving the ubiquitous small-scale semi-permanent features of the general ocean circulation: a multiplatform observational approach(American Meteorological Society, 2024-12-01)Based on 20 years of Argo and ship/animal-borne/glider hydrographic profile data, we derive a new high-resolution hydrographic Atlas and associated circulation field for the oceans above 2000 dbar. Satellite altimetric observations are used to explicitly regress out eddy noise in the fit, greatly reducing one of the major sources of noise. Geostrophic shears are found from the fitted geopotential anomaly fields. Ekman velocities are estimated using satellite wind stresses. Both Argo trajectory observations at 1000 dbar and surface drifter observations are used to reference geostrophic shears derived from the Atlas hydrography. Surface drifter velocities are analyzed with an additional wind friction term to remove the wind-related flow. Agreement between the surface geostrophic (referenced to Argo trajectories) and drifter-based surface velocity is high at both large scales and mesoscales, lending confidence to the derived geostrophic circulation fields. The Atlas reveals standing mesoscale eddies and meanders in western boundary systems and the braided jet structure of the Antarctic Circumpolar Current. In the interior, the upper-ocean flow consists of a highly baroclinic large-scale Sverdrup flow and smaller-scale (∼200-km width) semizonal jets, which are more barotropic (low vertical shear) and have an average zonal width of around 5000 km. These semizonal jets are globally ubiquitous—found in all basins pole to pole. The many permanent mesoscale features of the mean general circulation contrast with that predicted by theories of the large-scale flow in simplified flat-bottomed domains. The Atlas presents a new opportunity to benchmark modern high-resolution ocean and climate models.
-
PreprintHeat and freshwater changes in the Indian Ocean region(Nature Research, 2021-07-20)Across the Indo-Pacific region, rapid increases in surface temperatures, ocean heat content and concomitant hydrological changes have implications for sea level rise, ocean circulation and regional freshwater availability. In this Review, we synthesize evidence from multiple data sources to elucidate whether the observed heat and freshwater changes in the Indian Ocean represent an intensification of the hydrological cycle, as expected in a warming world. At the basin scale, twentieth century warming trends can be unequivocally attributed to human-induced climate change. Changes since 1980, however, appear dominated by multi-decadal variability associated with the Interdecadal Pacific oscillation, manifested as shifts in the Walker circulation and a corresponding reorganization of the Indo-Pacific heat and freshwater balance. Such variability, coupled with regional-scale trends, a short observational record and climate model uncertainties, makes it difficult to assess whether contemporary changes represent an anthropogenically forced transformation of the hydrological cycle. Future work must, therefore, focus on maintaining and expanding observing systems of remotely sensed and in situ observations, as well as extending and integrating coral proxy networks. Improved climate model simulations of the Maritime Continent region and its intricate exchange between the Pacific and Indian oceans are further necessary to quantify and attribute Indo-Pacific hydrological changes.
-
ArticleObservations of the upper ocean from autonomous platforms during the passage of extratropical Cyclone Epsilon (2020)(Oceanography Society, 2024-03-18)Hurricane Epsilon (2020) was a late-season, category-3 tropical cyclone that underwent extratropical transition and became Extratropical Cyclone Epsilon on October 26. The upper ocean response to the passage of the storm was observed by three types of autonomous platforms: an eXpendable Spar buoy, an Air-Launched Autonomous Micro-Observer profiling float, and two Seagliders. Taken together, this array enabled the rare collection of contemporaneous observations of the upper ocean, air-sea interface, and atmospheric boundary layer before, during, and after the passage of the storm. The evidence presented suggests that Extratropical Cyclone Epsilon contributed to breaking down the residual North Atlantic summer stratification regime and accelerated the shift to the prolonged ocean cooling associated with winter. The synergistic capabilities of the observational array are significant for two reasons: (1) by enabling the comparison of complementary atmosphere and ocean observations, taken from different platforms, they permit a comprehensive approach to better understand how storm-induced momentum, heat, and moisture fluxes alter upper ocean structure, and (2) they demonstrate the ability of future, targeted deployments of similar observational arrays to assess the fidelity of coupled ocean-atmosphere-wave numerical prediction models.
-
ArticleTurbulent diffusivity profiles on the shelf and slope at the southern edge of the Canada Basin(American Geophysical Union, 2024-02-28)Vertical profiles of temperature microstructure at 95 stations were obtained over the Beaufort shelf and shelfbreak in the southern Canada Basin during a November 2018 research cruise. Two methods for estimating the dissipation rates of temperature variance and turbulent kinetic energy were compared using this data set. Both methods require fitting a theoretical spectrum to observed temperature gradient spectra, but differ in their assumptions. The two methods agree for calculations of the dissipation rate of temperature variance, but not for that of turbulent kinetic energy. After applying a rigorous data rejection framework, estimates of turbulent diffusivity and heat flux are made across different depth ranges. The turbulent diffusivity of temperature is typically enhanced by about one order of magnitude in profiles on the shelf compared to near the shelfbreak, and similarly near the shelfbreak compared to profiles with bottom depth >1,000 m. Depth bin means are shown to vary depending on the averaging method (geometric means tend to be smaller than arithmetic means and maximum likelihood estimates). The statistical distributions of heat flux within the surface, cold halocline, and Atlantic water layer change with depth. Heat fluxes are typically <1 Wm−2, but are greater than 50 Wm−2 in ∼8% of the overall data. These largest fluxes are located almost exclusively within the surface layer, where temperature gradients can be large.
-
ArticleThe wave-age-dependent stress parameterisation (WASP) for momentum and heat turbulent fluxes at sea in SURFEX v8.1(European Geosciences Union, 2024-01-09)A widely applicable parameterisation of turbulent heat and momentum fluxes at sea has been developed for the SURFEX v8.1 surface model. This wave-age-dependent stress parameterisation (WASP) combines a close fit to available in situ observations at sea up to wind speed of 60 m s−1 with the possibility of activating the impact of wave growth on the wind stress. It aims in particular at representing the effect of surface processes that depend on the surface wind according to the state of the art. It can be used with the different atmospheric models coupled with the surface model SURFEX, including the CNRM-CM climate model, the operational (numerical weather prediction) systems in use at Météo-France, and the research model Meso-NH. Designed to be used in coupled or forced mode with a wave model, it can also be used in an atmosphere-only configuration. It has been validated and tested in several case studies covering different surface conditions known to be sensitive to the representation of surface turbulent fluxes: (i) the impact of a sea surface temperature (SST) front on low-level flow by weak wind, (ii) the simulation of a Mediterranean heavy precipitating event where waves are known to influence the low-level wind and displace precipitation, (iii) several tropical cyclones, and (iv) a climate run over 35 years. It shows skills comparable to or better than the different parameterisations in use in SURFEX v8.1 so far.
-
ArticleExtracting global maritime weather data from New England whaling and Portuguese Navy logbooks(Maritime Social History, 2024-03-29)In climate research, long datasets that describe weather conditions extending back in time to the pre– or early industrial age are invaluable. Such data helps scientists to establish a historical base-line for weather and climate variability, against which to measure changes over time, better understand anthropogenic departures, and illuminate interactions between different components of the climate system. To provide such information, a maritime historian and an oceanographer have combined their skill sets to expand the body of weather knowledge for some of the most remote regions on the planet. A rich trove of maritime weather information is contained in the vast repositories of ships’ logbooks from New England whaling and Portuguese Navy vessels, in which officers recorded weather information multiple times each day over the course of their voyages. Researchers are building a database to extract centuries-old weather information from approximately 4,200 North American whaling and 2,200 Portuguese Navy logbooks dating to the middle eighteenth century.