Seasonal evolution of water contributions to discharge from a Greenland outlet glacier : insight from a new isotope-mixing model
Seasonal evolution of water contributions to discharge from a Greenland outlet glacier : insight from a new isotope-mixing model
Date
2011-10-01
Authors
Bhatia, Maya P.
Das, Sarah B.
Kujawinski, Elizabeth B.
Henderson, Paul B.
Burke, Andrea
Charette, Matthew A.
Das, Sarah B.
Kujawinski, Elizabeth B.
Henderson, Paul B.
Burke, Andrea
Charette, Matthew A.
Linked Authors
Person
Person
Person
Person
Person
Alternative Title
Citable URI
As Published
Date Created
Location
DOI
10.3189/002214311798043861
Related Materials
Replaces
Replaced By
Keywords
Abstract
The Greenland ice sheet (GrIS) subglacial hydrological system may undergo a seasonal evolution, with significant geophysical and biogeochemical implications. We present results from a new isotope-mixing model to quantify the relative contributions of surface snow, glacial ice and delayed flow to the bulk meltwater discharge from a small (∼5 km2) land-terminating GrIS outlet glacier during melt onset (May) and at peak melt (July). We use radioactive (222Rn) and stable isotopes (18O, deuterium) to differentiate the water source contributions. Atmospherically derived 7Be further constrains meltwater transit time from the glacier surface to the ice margin. We show that (1) 222Rn is a promising tracer for glacial waters stored at the bed and (2) a quantitative chemical mixing model can be constructed by combining 222Rn and the stable water isotopes. Applying this model to the bulk subglacial outflow from our study area, we find a constant delayed-flow (stored) component from melt onset through peak melt. This component is diluted first by snowmelt and then by increasing glacial ice melt as the season progresses. Results from this pilot study are consistent with the hypothesis that subglacial drainage beneath land-terminating sections of the GrIS undergoes a seasonal evolution from a distributed to a channelized system.
Description
Author Posting. © International Glaciological Society, 2011. This article is posted here by permission of International Glaciological Society for personal use, not for redistribution. The definitive version was published in Journal of Glaciology 57 (2011): 929-941, doi:10.3189/002214311798043861.
Embargo Date
Citation
Journal of Glaciology 57 (2011): 929-941