Charette Matthew A.

No Thumbnail Available
Last Name
First Name
Matthew A.

Search Results

Now showing 1 - 20 of 77
  • Preprint
    Geochemical and physical sources of radon variation in a subterranean estuary — implications for groundwater radon activities in submarine groundwater discharge studies
    ( 2007-12-13) Dulaiova, Henrieta ; Gonneea, Meagan E. ; Henderson, Paul B. ; Charette, Matthew A.
    Submarine groundwater discharge (SGD), in form of springs and diffuse seepage, has long been recognized as a source of chemical constituents to the coastal ocean. Because groundwater is two to four orders of magnitude richer in radon than surface water, it has been used as both a qualitative and a quantitative tracer of groundwater discharge. Besides this large activity gradient, the other perceived advantage of radon stems from its classification as noble gas; that is, its chemical behavior is expected not to be influenced by salinity, redox, and diagenetic conditions present in aquatic environments. During our three-year monthly sampling of the subterranean estuary (STE) in Waquoit Bay, MA, we found highly variable radon activities (50-1600 dpm L-1) across the fresh-saline interface of the aquifer. We monitored pore water chemistry and radon activity at 8 fixed depths spanning from 2 to 5.6 m across the STE, and found seasonal fluctuations in activity at depths where elevated radon was observed. We postulate that most of pore water 222Rn is produced from particle-surface bound 226Ra, and that the accumulation of this radium is likely regulated by the presence of manganese (hydr)oxides. Layers of manganese (hydr)oxides form at the salinity transition zone (STZ), where water with high salinity, high manganese, and low redox potential mixes with fresh water. Responding to the seasonality of aquifer recharge, the location of the STZ and the layers with radium enriched manganese (hydr)oxide follows the seasonal land- or bay-ward movement of the freshwater lens. This results in seasonal changes in the depth where elevated radon activities are observed. The conclusion of our study is that the freshwater part of the STE has a radon signature that is completely different from the STZ or recirculated sea water. Therefore, the radon activity in SGD will depend on the ratio of fresh and recirculated seawater in the discharging groundwater.
  • Preprint
    Kinetics of thorium and particle cycling along the U.S. GEOTRACES North Atlantic Transect
    ( 2017-05) Lerner, Paul ; Marchal, Olivier ; Lam, Phoebe J. ; Buesseler, Ken O. ; Charette, Matthew A.
    The high particle reactivity of thorium has resulted in its widespread use in tracing processes impacting marine particles and their chemical constituents. The use of thorium isotopes as tracers of particle dynamics, however, largely relies on our understanding of how the element scavenges onto particles. Here, we estimate apparent rate constants of Th adsorption (k1), Th desorption (k−1), bulk particle degradation (β-1), and bulk particle sinking speed (w) along the water column at 11 open-ocean stations occupied during the GEOTRACES North Atlantic Section (GA03). First, we provide evidence that the budgets of Th isotopes and particles at these stations appear to be generally dominated by radioactive production and decay sorption reactions, particle degradation, and particle sinking. Rate parameters are then estimated by fitting a Th and particle cycling model to data of dissolved and particulate 228,230,234Th, 228Ra, particle concentrations, and 234,238U estimates based on salinity, using a nonlinear programming technique. We find that the adsorption rate constant (k1) generally decreases with depth across the section: broadly, the time scale 1/k1 averages 1.0 yr in the upper 1000 m and (1.4–1.5) yr below. A positive relationship between k1 and particle concentration (P) is found, i.e., , k1 ∝ Pb where b ≥ 1, consistent with the notion that k1 increases with the number of surface sites available for adsorption. The rate constant ratio, K = k1/(k-1 + β-1), which measures the collective influence of rate parameters on Th scavenging, averages 0.2 for most stations and most depths. We clarify the conditions under which K/P is equivalent to the distribution coefficient, KD, test that the conditions are met at the stations, and find that decreases with P, in line with a particle concentration effect (dKD/dP < 0). In contrast to the influence of colloids as envisioned by the Brownian pumping hypothesis, we provide evidence that the particle concentration effect arises from the joint effect of P on the rate constants for thorium attachment to, and detachment from, particles.
  • Article
    GEOTRACES radium isotopes interlaboratory comparison experiment
    (Association for the Sciences of Limnology and Oceanography, 2012-06) Charette, Matthew A. ; Dulaiova, Henrieta ; Gonneea, Meagan E. ; Henderson, Paul B. ; Moore, Willard S. ; Scholten, Jan C. ; Pham, Mai Khanh
    In anticipation of the international GEOTRACES program, which will study the global marine biogeochemistry of trace elements and isotopes, we conducted a multi-lab intercomparison for radium isotopes. The intercomparison was in two parts involving the distribution of: (1) samples collected from four marine environments (open ocean, continental slope, shelf, and estuary) and (2) a suite of four reference materials prepared with isotopic standards (circulated to participants as 'unknowns'). Most labs performed well with 228Ra and 224Ra determination, however, there were a number of participants that reported 226Ra, 223Ra, and 228Th (supported 224Ra) well outside the 95% confidence interval. Many outliers were suspected to be a result of poorly calibrated detectors, though other method specific factors likely played a role (e.g., detector leakage, insufficient equilibration). Most methods for radium analysis in seawater involve a MnO2 fiber column preconcentration step; as such, we evaluated the extraction efficiency of this procedure and found that it ranged from an average of 87% to 94% for the four stations. Hence, nonquantitative radium recovery from seawater samples may also have played a role in lab-to-lab variability.
  • Preprint
    A new method for the determination of low-level actinium-227 in geological samples
    ( 2012-07-31) Dulaiova, Henrieta ; Sims, Kenneth W. W. ; Charette, Matthew A. ; Prytulak, Julie ; Blusztajn, Jerzy S.
    We developed a new method for the determination of 227Ac in geological samples. The method uses extraction chromatographic techniques and alpha-spectrometry and is applicable for a range of natural matrices. Here we report on the procedure and results of the analysis of water (fresh and seawater) and rock samples. Water samples were acidified and rock samples underwent total dissolution via acid leaching. A DGA (N,N,N’,N’-tetra-n-octyldiglycolamide) extraction chromatographic column was used for the separation of actinium. The actinium fraction was prepared for alpha spectrometric measurement via cerium fluoride micro-precipitation. Recoveries of actinium in water samples were 80±8 % (number of analyses n=14) and in rock samples 70±12 % (n=30). The minimum detectable activities (MDA) were 0.017-0.5 Bq kg-1 for both matrices. Rock sample 227Ac activities ranged from 0.17 to 8.3 Bq kg-1 and water sample activities ranged from below MDA values to 14 Bq kg-1of 227Ac. From the analysis of several standard rock and water samples with the method we found very good agreement between our results and certified values.
  • Article
    Observational and modeling evidence of seasonal trends in sediment-derived material inputs to the Chukchi Sea
    (American Geophysical Union, 2020-04-27) Kipp, Lauren ; Spall, Michael A. ; Pickart, Robert S. ; Kadko, David C. ; Moore, Willard S. ; Dabrowski, Jessica S. ; Charette, Matthew A.
    Benthic inputs of nutrients help support primary production in the Chukchi Sea and produce nutrient‐rich water masses that ventilate the halocline of the western Arctic Ocean. However, the complex biological and redox cycling of nutrients and trace metals make it difficult to directly monitor their benthic fluxes. In this study, we use radium‐228, which is a soluble radionuclide produced in sediments, and a numerical model of an inert, generic sediment‐derived tracer to study variability in sediment inputs to the Chukchi Sea. The 228Ra observations and modeling results are in general agreement and provide evidence of strong benthic inputs to the southern Chukchi Sea during the winter, while the northern shelf receives higher concentrations of sediment‐sourced materials in the spring and summer due to continued sediment‐water exchange as the water mass traverses the shelf. The highest tracer concentrations are observed near the shelfbreak and southeast of Hanna Shoal, a region known for high biological productivity and enhanced benthic biomass.
  • Article
    Closing the global marine Ra-226 budget reveals the biological pump as a dominant removal flux in the upper ocean
    (American Geophysical Union, 2022-06-10) Xu, Bochao ; Cardenas, M. Bayani ; Santos, Isaac R. ; Burnett, William C. ; Charette, Matthew A. ; Rodellas, Valenti ; Li, Sanzhong ; Lian, Ergang ; Yu, Zhigang
    Radium isotopes are powerful proxies in oceanography and hydrology. Radium mass balance models, including assessments of submarine groundwater discharge (SGD), often overlook particle scavenging (PS) as a pathway for dissolved radium removal from the world ocean. Here, we build a global ocean 226Ra mass balance model and reevaluate the potential importance of PS. We find that PS is the major 226Ra sink for the upper ocean, removing about 96% of the total input from various sources. Aside from vertical exchange with the lower ocean, SGD is the largest 226Ra source into the upper ocean. The biological pump transfers particles to the deep ocean, resulting in a major but often overlooked impact on the global 226Ra marine budget. Our findings suggest that radium mass balance models should consider PS in systems with high siliceous algae production and export fluxes and long water residence times to prevent underestimation of large-scale SGD fluxes.
  • Article
    Increased fluxes of shelf-derived materials to the central Arctic Ocean
    (American Association for the Advancement of Science, 2018-01-03) Kipp, Lauren ; Charette, Matthew A. ; Moore, Willard S. ; Henderson, Paul B. ; Rigor, Ignatius
    Rising temperatures in the Arctic Ocean region are responsible for changes such as reduced ice cover, permafrost thawing, and increased river discharge, which, together, alter nutrient and carbon cycles over the vast Arctic continental shelf. We show that the concentration of radium-228, sourced to seawater through sediment-water exchange processes, has increased substantially in surface waters of the central Arctic Ocean over the past decade. A mass balance model for 228Ra suggests that this increase is due to an intensification of shelf-derived material inputs to the central basin, a source that would also carry elevated concentrations of dissolved organic carbon and nutrients. Therefore, we suggest that significant changes in the nutrient, carbon, and trace metal balances of the Arctic Ocean are underway, with the potential to affect biological productivity and species assemblages in Arctic surface waters.
  • Article
    Desorption behavior of Fukushima-derived radiocesium in sand collected from Yotsukura Beach in Fukushima prefecture
    (The Japan Society for Analytical Chemistry, 2020-05-10) Nagao, Seiya ; Terasaki, Soichiro ; Ochiai, Shinya ; Fukushi, Keisuke ; Tomihara, Seiichi ; Charette, Matthew A. ; Buesseler, Ken O.
    Beach sand samples were collected along a coastal area 32 km south of the Fukushima Daiichi Nuclear Power Plant (FDNPP) in Fukushima Prefecture, Japan, 5 years after the FDNPP accident. Desorption experiments were performed on the sand samples using seawater in a batch experimental system to understand the forms of existence of radiocesium in sand and their desorption behavior in a coastal environment. The percentage of radiocesium desorption decreased exponentially with an increase in the number of desorption experiments for the four sand samples, with 137Cs radioactivity from 16 to 1077 Bq kg−1 at surface and deeper layers from three sites. Total desorption percentage ranged from 19 to 58% in 12 desorption experiments. The results indicate that the weak adsorption varies with the sampling sites and their depth layer. To understand the desorption behavior of radiocesium in the sand samples, the desorption experiments were performed for a sand sample by using natural and artificial seawater, and NaCl solution in the presence and absence of KCl. The 137Cs desorption from the sand collected at a depth of 100 – 105 cm from the ground surface (137Cs radioactivity 1052 ± 25 Bq kg−1) was 0.1% by ultrapure water, 3.7% by 1/4 seawater and 7.1% by 1/2 seawater, 2.2% by 470 mM NaCl solution (corresponding to a similar concentration of seawater) and 10 – 12% by seawater, artificial seawater and 470 mM NaCl + 8 mM KCl solution. These results indicate that about 10% of radiocesium adsorbed on the sand is mainly desorbed by ion exchange of potassium ion in seawater, though the concentration of major cation, or sodium ion, in seawater makes a small contribution on 137Cs desorption from the sand samples.
  • Article
    Revisiting 228Th as a tool for determining sedimentation and mass accumulation rates
    (Elsevier, 2022-07-12) Tamborski, Joseph ; Cai, Pinghe ; Eagle, Meagan ; Henderson, Paul B. ; Charette, Matthew A.
    The use of 228Th has seen limited application for determining sedimentation and mass accumulation rates in coastal and marine environments. Recent analytical advances have enabled rapid, precise measurements of particle-bound 228Th using a radium delayed coincidence counting system (RaDeCC). Herein we review the 228Th cycle in the marine environment and revisit the historical use of 228Th as a tracer for determining sediment vertical accretion and mass accumulation rates in light of new measurement techniques. Case studies comparing accumulation rates from 228Th and 210Pb are presented for a micro-tidal salt marsh and a marginal sea environment. 228Th and 210Pb have been previously measured in mangrove, deltaic, continental shelf and ocean basin environments, and a literature synthesis reveals that 228Th (measured via alpha or gamma spectrometry) derived accumulation rates are generally equal to or greater than estimates derived from 210Pb, reflecting different integration periods. Use of 228Th is well-suited for shallow (<15 cm) cores over decadal timescales. Application is limited to relatively homogenous sediment profiles with minor variations in grain size and minimal bioturbation. When appropriate conditions are met, complimentary use of 228Th and 210Pb can demonstrate that the upper layers of a core are undisturbed and can improve spatial coverage in mapping accumulation rates due to the higher sample throughput for sediment 228Th.
  • Preprint
    Coupled radon, methane and nitrate sensors for large-scale assessment of groundwater discharge and non-point source pollution to coastal waters
    ( 2009-12-09) Dulaiova, Henrieta ; Camilli, Richard ; Henderson, Paul B. ; Charette, Matthew A.
    We constructed a survey system of radon/methane/nitrate/salinity to find sites of submarine groundwater discharge (SGD) and groundwater nitrate input. We deployed the system in Waquoit Bay and Boston Harbor, MA where we derived SGD rates using a mass balance of radon with methane serving as a fine resolution qualitative indicator of groundwater. In Waquoit Bay we identified several locations of enhanced groundwater discharge, out of which two (Childs and Quashnet Rivers) were studied in more detail. The Childs River was characterized by high nitrate input via groundwater discharge, while the Quashnet River SGD was notable but not a significant source of nitrate. Our radon survey of Boston Harbor revealed several sites with significant SGD, out of these Inner Harbor and parts of Dorchester Bay and Quincy Bay had groundwater fluxes accompanied by significant water column nitrogen concentrations. The survey system has proven effective in revealing areas of SGD and non-point source pollution.
  • Article
    Underground gamma-ray measurements of radium isotopes from hydrothermal plumes in the deep Pacific Ocean
    (Elsevier, 2019-07-31) Hult, Mikael ; Charette, Matthew A. ; Lutter, Guillaume ; Marissens, Gerd ; Henderson, Paul B. ; Sobiech-Matura, Katarzyna ; Simgen, Hardy
    The radium isotopes 226Ra and 228Ra can provide important data on the dynamics of deep-sea hydrothermal plumes that travel the oceans for decades and have great impact on the ocean chemistry. This study focuses on parameters important for obtaining low detection limits for 228Ra using gamma-ray spectrometry. It is present at mBq-levels in samples collected during the US GEOTRACES 2013 cruise to the Southeast Pacific Ocean.
  • Article
    The Ra-226–Ba relationship in the North Atlantic during GEOTRACES-GA01
    (Copernicus Publications on behalf of the European Geosciences Union, 2018-05-17) Le Roy, Emilie ; Sanial, Virginie ; Charette, Matthew A. ; van Beek, Pieter ; Lacan, Francois ; Jacquet, Stéphanie H. M. ; Henderson, Paul B. ; Souhaut, Marc ; García-Ibáñez, Maribel I. ; Jeandel, Catherine ; Perez, Fiz F. ; Sarthou, Geraldine
    We report detailed sections of radium-226 (226Ra, T1∕2 =  1602 years) activities and barium (Ba) concentrations determined in the North Atlantic (Portugal–Greenland–Canada) in the framework of the international GEOTRACES program (GA01 section – GEOVIDE project, May–July 2014). Dissolved 226Ra and Ba are strongly correlated along the section, a pattern that may reflect their similar chemical behavior. Because 226Ra and Ba have been widely used as tracers of water masses and ocean mixing, we investigated their behavior more thoroughly in this crucial region for thermohaline circulation, taking advantage of the contrasting biogeochemical patterns existing along the GA01 section. We used an optimum multiparameter (OMP) analysis to distinguish the relative importance of physical transport (water mass mixing) from nonconservative processes (sedimentary, river or hydrothermal inputs, uptake by particles and dissolved–particulate dynamics) on the 226Ra and Ba distributions in the North Atlantic. Results show that the measured 226Ra and Ba concentrations can be explained by conservative mixing for 58 and 65 % of the samples, respectively, notably at intermediate depth, away from the ocean interfaces. 226Ra and Ba can thus be considered conservative tracers of water mass transport in the ocean interior on the space scales considered here, namely, on the order of a few thousand kilometers. However, regions in which 226Ra and Ba displayed nonconservative behavior and in some cases decoupled behaviors were also identified, mostly at the ocean boundaries (seafloor, continental margins and surface waters). Elevated 226Ra and Ba concentrations found in deepwater in the West European Basin suggest that lower Northeast Atlantic Deep Water (NEADWl) accumulates 226Ra and Ba from sediment diffusion and/or particle dissolution during transport. In the upper 1500 m of the West European Basin, deficiencies in 226Ra and Ba are likely explained by their incorporation in planktonic calcareous and siliceous shells, or in barite (BaSO4) by substitution or adsorption mechanisms. Finally, because Ba and 226Ra display different source terms (mostly deep-sea sediments for 226Ra and rivers for Ba), strong decoupling between 226Ra and Ba were observed at the land–ocean boundaries. This is especially true in the shallow stations near the coasts of Greenland and Newfoundland where high 226Ra ∕ Ba ratios at depth reflect the diffusion of 226Ra from sediment and low 226Ra ∕ Ba ratios in the upper water column reflect the input of Ba associated with meteoric waters.
  • Preprint
    Particle export during the Southern Ocean Iron Experiment (SOFeX)
    ( 2004-07-26) Buesseler, Ken O. ; Andrews, J. E. ; Pike, Steven M. ; Charette, Matthew A. ; Goldson, Laura E. ; Brzezinski, Mark A. ; Lance, V. P.
    We studied the effect of iron addition on particle export in the Southern Ocean by measuring changes in the distribution of thorium-234 during a 4 week Fe enrichment experiment conducted in the high-silicate high-nitrate waters just south of the Southern Antarctic Circumpolar Current Front at 172.5°W. Decreases in 234Th activity with time in the fertilized mixed layer (0-50m) exceeded those in unfertilized waters, indicating enhanced export of 234Th on sinking particles after Fe enrichment. The addition of Fe also affected export below the fertilized patch by increasing the efficiency of particle export through the 100 m depth horizon. Extensive temporal and vertical Lagrangian sampling allowed us to make a detailed examination of the 234Th flux model, which was used to quantify the fluxes of particulate organic carbon (POC) and biogenic silica (bSiO2). Iron addition increased the flux of both POC and bSiO2 out of the mixed layer by about 300%. The flux at 100 m increased by more than 700% and 600% for POC and bSiO2, respectively. The absolute magnitude of the POC and bSiO2 fluxes were not large relative to natural blooms at these latitudes, or to those found in association with the termination of blooms in other ocean regions. Our results support the hypothesis that Fe addition leads directly to significant particle export and sequestration of C in the deep ocean. This is a key link between ocean Fe inputs and past changes in atmospheric CO2 and climate.
  • Preprint
    Molecular characterization of dissolved organic matter associated with the Greenland ice sheet
    ( 2010-03-16) Bhatia, Maya P. ; Das, Sarah B. ; Longnecker, Krista ; Charette, Matthew A. ; Kujawinski, Elizabeth B.
    Subsurface microbial oxidation of overridden soils and vegetation beneath glaciers and ice sheets may affect global carbon budgets on glacial-interglacial timescales. The likelihood and magnitude of this process depends on the chemical nature and reactivity of the subglacial organic carbon stores. We examined the composition of carbon pools associated with different regions of the Greenland ice sheet (subglacial, supraglacial, proglacial) in order to elucidate the type of dissolved organic matter (DOM) present in the subglacial discharge over a melt season. Electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry coupled to multivariate statistics permitted unprecedented molecular level characterization of this material and revealed that carbon pools associated with discrete glacial regions are comprised of different compound classes. Specifically, a larger proportion of protein-like compounds were observed in the supraglacial samples and in the early melt season (spring) subglacial discharge. In contrast, the late melt season (summer) subglacial discharge contained a greater fraction of lignin-like and other material presumably derived from underlying vegetation and soil. These results suggest (1) that the majority of supraglacial DOM originates from autochthonous microbial processes on the ice sheet surface, (2) that the subglacial DOM contains allochthonous carbon derived from overridden soils and vegetation as well as autochthonous carbon derived from in situ microbial metabolism, and (3) that the relative contribution of allochthonous and autochthonous material in subglacial discharge varies during the melt season. These conclusions are consistent with the hypothesis that, given sufficient time (e.g., overwinter storage), resident subglacial microbial communities may oxidize terrestrial material beneath the Greenland ice sheet.
  • Preprint
    Testing models of thorium and particle cycling in the ocean using data from station GT11-22 of the U.S. GEOTRACES North Atlantic section
    ( 2016-03-31) Lerner, Paul ; Marchal, Olivier ; Lam, Phoebe J. ; Anderson, Robert F. ; Buesseler, Ken O. ; Charette, Matthew A. ; Edwards, R. Lawrence ; Hayes, Christopher T. ; Huang, Kuo-Fang ; Lu, Yanbin ; Robinson, Laura F. ; Solow, Andrew R.
    Thorium is a highly particle-reactive element that possesses different measurable radio-isotopes in seawater, with well-constrained production rates and very distinct half-lives. As a result, Th has emerged as a key tracer for the cycling of marine particles and of their chemical constituents, including particulate organic carbon. Here two different versions of a model of Th and particle cycling in the ocean are tested using an unprecedented data set from station GT11-22 of the U.S. GEOTRACES North Atlantic Section: (i) 21 228;230;234Th activities of dissolved and particulate fractions, (ii) 228Ra activities, (iii) 234;238U activities estimated from salinity data and an assumed 234U/238U ratio, and (iv) particle concentrations, below a depth of 125 m. The two model versions assume a single class of particles but rely on different assumptions about the rate parameters for sorption reactions and particle processes: a first version (V1) assumes vertically uniform parameters (a popular description), whereas the second (V2) does not. Both versions are tested by fitting to the GT11-22 data using generalized nonlinear least squares and by analyzing residuals normalized to the data errors. We find that model V2 displays a significantly better fit to the data than model V1. Thus, the mere allowance of vertical variations in the rate parameters can lead to a significantly better fit to the data, without the need to modify the structure or add any new processes to the model. To understand how the better fit is achieved we consider two parameters, K = k1=(k-1 + β-1) and K/P, where k1 is the adsorption rate constant, k-1 the desorption rate constant, β-1 the remineralization rate constant, and P the particle concentration. We find that the rate constant ratio K is large (≥0.2) in the upper 1000 m and decreases to a nearly uniform value of ca. 0.12 below 2000 m, implying that the specific rate at which Th attaches to particles relative to that at which it is released from particles is higher in the upper ocean than in the deep ocean. In contrast, K/P increases with depth below 500 m. The parameters K and K/P display significant positive and negative monotonic relationship with P, respectively, which is collectively consistent with a particle concentration effect.
  • Article
    Lingering radioactivity at the Bikini and Enewetak Atolls
    (Elsevier, 2017-10-30) Buesseler, Ken O. ; Charette, Matthew A. ; Pike, Steven M. ; Henderson, Paul B. ; Kipp, Lauren
    We made an assessment of the levels of radionuclides in the ocean waters, seafloor and groundwater at Bikini and Enewetak Atolls where the US conducted nuclear weapons tests in the 1940's and 50's. This included the first estimates of submarine groundwater discharge (SGD) derived from radium isotopes that can be used here to calculate radionuclide fluxes in to the lagoon waters. While there is significant variability between sites and sample types, levels of plutonium (239,240Pu) remain several orders of magnitude higher in lagoon seawater and sediments than what is found in rest of the world's oceans. In contrast, levels of cesium-137 (137Cs) while relatively elevated in brackish groundwater are only slightly higher in the lagoon water relative to North Pacific surface waters. Of special interest was the Runit dome, a nuclear waste repository created in the 1970's within the Enewetak Atoll. Low seawater ratios of 240Pu/239Pu suggest that this area is the source of about half of the Pu in the Enewetak lagoon water column, yet radium isotopes suggest that SGD from below the dome is not a significant Pu source. SGD fluxes of Pu and Cs at Bikini were also relatively low. Thus radioactivity associated with seafloor sediments remains the largest source and long term repository for radioactive contamination. Overall, Bikini and Enewetak Atolls are an ongoing source of Pu and Cs to the North Pacific, but at annual rates that are orders of magnitude smaller than delivered via close-in fallout to the same area.
  • Preprint
    Flow and nutrient dynamics in a subterranean estuary (Waquoit Bay, MA, USA) : field data and reactive transport modeling
    ( 2008-04-25) Spiteri, Claudette ; Slomp, Caroline P. ; Charette, Matthew A. ; Tuncay, Kagan ; Meile, Christof
    A two-dimensional (2D) reactive transport model is used to investigate the controls on nutrient (NO3-, NH4+, PO4) dynamics in a coastal aquifer. The model couples density dependent flow to a reaction network which includes oxic degradation of organic matter, denitrification, iron oxide reduction, nitrification, Fe2+ oxidation and sorption of PO4 onto iron oxides. Porewater measurements from a well transect at Waquoit Bay, MA, USA indicate the presence of a reducing plume with high Fe2+, NH4+, DOC (dissolved organic carbon) and PO4 concentrations overlying a more oxidizing NO3--rich plume. These two plumes travel nearly conservatively until they start to overlap in the intertidal coastal sediments prior to discharge into the bay. In this zone, the aeration of the surface beach sediments drives nitrification and allows the precipitation of iron oxide, which leads to the removal of PO4 through sorption. Model simulations suggest that removal of NO3- through denitrification is inhibited by the limited overlap between the two freshwater plumes, as well as by the refractory nature of terrestrial DOC. Submarine groundwater discharge is a significant source of NO3- to the bay.
  • Preprint
    Preparation of Mn-fiber standards for the efficiency calibration of the delayed coincidence counting system (RaDeCC)
    ( 2010-04) Scholten, Jan C. ; Pham, Mai Khanh ; Blinova, Oxana ; Charette, Matthew A. ; Dulaiova, Henrieta ; Eriksson, Mats
    Precise measurements of the short lived radium isotopes 223Ra and 224Ra by means of the delayed coincidence counting system (RaDeCC) rely on an efficiency calibration of this system using Mn-fiber standards for which radium activities are exactly known. We prepared seventeen different standards by placing Mn-fibers in seawater spiked with various amounts of 227Ac (with 223Ra in radioactive equilibrium), 228Th (in radioactive equilibrium with 232Th and 224Ra) and 226Ra. We tested for quantitative adsorption of 227Ac and 228Th on the Mn-fibers by: (1) measuring 227Ac and 232Th in the residual solutions after preparing the Mn-fiber standards and (2) monitoring their 223Ra and 224Ra activities over a period of ~100 days. In the residual solutions, the activities of 227Ac and 232Th were < 1.0 % and < 5.3 %, respectively, of the activities initially added to the Mn-fibers. Our results indicate that Milli-Q water washing of the Mn-fibers is the major source of our observed losses of thorium. Measurements of 227Ac standards over 1½ years indicate a significant decrease of measurable 223Ra with time prohibiting the long-term use of 227Ac Mn-fiber standards. We found the 224Ra efficiency to be independent of the range of 227Ac, 228Th and 226Ra activities on the Mn-fibers standards used. The efficiency determination for 223Ra, however, may be biased in the case of relatively high 224Ra activities due to insufficient correction of chance of coincidence. Thus we suggest using a single 227Ac Mn-fiber standard for the efficiency determination for 223Ra.
  • Preprint
    Radium isotopes as tracers of iron sources fueling a Southern Ocean phytoplankton bloom
    ( 2007-04-24) Charette, Matthew A. ; Gonneea, Meagan E. ; Morris, Paul J. ; Statham, Peter J. ; Fones, Gary R. ; Planquette, Helene ; Salter, Ian ; Naveira Garabato, Alberto C.
    Elevated levels of productivity in the wake of Southern Ocean island systems are common despite the fact that they are encircled by high nutrient low chlorophyll (HNLC) waters. In the Crozet Plateau region, it has been hypothesized that iron from island runoff or sediments of the plateau could be fueling the austral summer phytoplankton bloom. Here, we use radium isotopes to quantify the rates of surface ocean iron supply fueling the bloom in the Crozet Plateau region. A 1-D eddy-diffusion-mixing model applied to a 228Ra profile (t1/2 = 5.75 yr) at a station north of the islands suggested fast vertical mixing in the upper 300 m (Kz = 11-100 cm2 s- 1) with slower mixing between 300 and 1000 m (Kz = 1.5 cm2 s-1). This estimate is discussed in the context of Kz derived from the CTD/LADCP data. In combination with the dissolved Fe profile at this location, we estimated a vertical flux of between 5.6 and 31 nmol Fe m-2 d-1. The cross-plateau gradients in the short-lived radium isotopes, 224Ra (t1/2 = 3.66 d) and 223Ra (t1/2 = 11.4 d), yielded horizontal eddy diffusivities (Kh) of 39 m2 s-1 and 6.6 m2 s-1, respectively. If we assume that the islands (surface runoff) alone were supplying dissolved Fe to the bloom region, then the flux estimates range from 2.3 to 14 nmol Fe m-2 d-1. If the plateau sediments are considered a source of Fe, and conveyed to the bloom region through deep winter mixing combined with horizontal transport, then this flux may be as high as 64 to 390 nmol Fe m-2 d-1. Combined, these Fe sources are sufficient to initiate and maintain the annual phytoplankton bloom.
  • Article
    How significant is submarine groundwater discharge and its associated dissolved inorganic carbon in a river-dominated shelf system?
    (Copernicus Publications on behalf of the European Geosciences Union, 2012-05-22) Liu, Q. ; Dai, Minhan ; Chen, W. ; Huh, C.-A. ; Wang, Guihua ; Li, Q. ; Charette, Matthew A.
    In order to assess the role of submarine groundwater discharge (SGD) and its impact on the carbonate system on the northern South China Sea (NSCS) shelf, we measured seawater concentrations of four radium isotopes 223,224,226,228Ra along with carbonate system parameters in June–July, 2008. Complementary groundwater sampling was conducted in coastal areas in December 2008 and October 2010 to constrain the groundwater end-members. The distribution of Ra isotopes in the NSCS was largely controlled by the Pearl River plume and coastal upwelling. Long-lived Ra isotopes (228Ra and 226Ra) were enriched in the river plume but low in the offshore surface water and subsurface water/upwelling zone. In contrast, short-lived Ra isotopes (224Ra and 223Ra) were elevated in the subsurface water/upwelling zone as well as in the river plume but depleted in the offshore surface water. In order to quantify SGD, we adopted two independent mathematical approaches. Using a three end-member mixing model with total alkalinity (TAlk) and Ra isotopes, we derived a SGD flux into the NSCS shelf of 2.3–3.7 × 108 m3 day−1. Our second approach involved a simple mass balance of 228Ra and 226Ra and resulted in a first order but consistent SGD flux estimate of 2.2–3.7 × 108 m3 day−1. These fluxes were equivalent to 12–21 % of the Pearl River discharge, but the source of the SGD was mostly recirculated seawater. Despite the relatively small SGD volume flow compared to the river, the associated material fluxes were substantial given their elevated concentrations of dissolved inorganic solutes. In this case, dissolved inorganic carbon (DIC) flux through SGD was 153–347 × 109 mol yr−1, or ~23–53 % of the riverine DIC export flux. Our estimates of the groundwater-derived phosphate flux ranged 3–68 × 107 mol yr−1, which may be responsible for new production on the shelf up to 0.3–6.3 mmol C m−2 d−1. This rate of new production would at most consume 11 % of the DIC contribution delivered by SGD. Hence, SGD may play an important role in the carbon balance over the NSCS shelf.