Geology and Geophysics (G&G)
Permanent URI for this collection
Scientists in the G&G Department seek knowledge of the structure, composition, and dynamics of the earth’s interior, the origin and evolution of the earth’s crust, controls on ocean and climate change on time scales of decades to 100 million years, and processes of mass and energy transfer at the land-sea interface.
Browse
Recent Submissions
1 - 20 of 1858
-
ArticleNeurodiversity: An important axis of diversity in ocean sciences(Oceanography Society, 2023-12-05)Neurodiversity refers to variations in the human brain that affect information processing; it includes conditions, or “neurotypes,” such as autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), dyslexia, dyscalculia, and dyspraxia, among others. Neurodiversity can be conceptualized as significant differences in the ways that individuals process information; such differences may concern written or verbal language, sensory information, body language, or social interactions. These differences have been historically viewed within the medical model of disability, for example, as deficits in ability through a diagnosed condition, often associated with a goal of curing or managing the condition.
-
ArticleDeeper and stronger North Atlantic Gyre during the Last Glacial Maximum(Nature Research, 2024-07-10)Subtropical gyre (STG) depth and strength are controlled by wind stress curl and surface buoyancy forcing1,2. Modern hydrographic data reveal that the STG extends to a depth of about 1 km in the Northwest Atlantic, with its maximum depth defined by the base of the subtropical thermocline. Despite the likelihood of greater wind stress curl and surface buoyancy loss during the Last Glacial Maximum (LGM)3, previous work suggests minimal change in the depth of the glacial STG4. Here we show a sharp glacial water mass boundary between 33° N and 36° N extending down to between 2.0 and 2.5 km—approximately 1 km deeper than today. Our findings arise from benthic foraminiferal δ18O profiles from sediment cores in two depth transects at Cape Hatteras (36–39° N) and Blake Outer Ridge (29–34° N) in the Northwest Atlantic. This result suggests that the STG, including the Gulf Stream, was deeper and stronger during the LGM than at present, which we attribute to increased glacial wind stress curl, as supported by climate model simulations, as well as greater glacial production of denser subtropical mode waters (STMWs). Our data suggest (1) that subtropical waters probably contributed to the geochemical signature of what is conventionally identified as Glacial North Atlantic Intermediate Water (GNAIW)5,6,7 and (2) the STG helped sustain continued buoyancy loss, water mass conversion and northwards meridional heat transport (MHT) in the glacial North Atlantic.
-
ArticleRecent advances in vertical temperature profiler instrumentation and flux estimation methods facilitate groundwater – Surface water exchange studies in environments with strong discharge zones(Elsevier, 2024-06-23)Groundwater fluxes to many surface water systems are spatially heterogeneous with discharge focused into discrete, high-flux zones. Quantifying fluxes in these preferential discharge zones is critical to a range of surface water habitat and water quality processes, but characterization can be difficult due to short-scale spatial and temporal variability. Passive heat-as-a-tracer methods employing vertical temperature profiler (VTP) data can provide the necessary spatial and temporal resolution, but upward fluid flow strongly attenuates the thermal signals used for estimating fluxes. In preferential discharge zones it becomes difficult to measure the signals in the subsurface and the flux parameter can become insensitive in the analysis models, leading to large uncertainties. We use data from a high-flux site of contaminant-loaded groundwater discharge to the Quashnet River on Cape Cod, Massachusetts, USA, to demonstrate how recent advances in VTP instrumentation that allow for the acquisition of high-resolution (0.001 °C) temperature data at short (1 cm) offsets near the ground surface, combined with advances in flux estimation methods that exploit the information content of the high-resolution data, facilitate heat-as-a-tracer approaches for characterizing groundwater-surface water exchanges and make it possible to obtain accurate and statistically robust results in a preferential discharge zone with a specific discharge of ∼1 m/d.
-
ArticleNon-equilibrium scour evolution around an emerged structure exposed to a transient wave(MDPI, 2024-06-05)The present study evaluates the performance of two numerical approaches in estimating non-equilibrium scour patterns around a non-slender square structure subjected to a transient wave, by comparing numerical findings with experimental data. This study also investigates the impact of the structure’s positioning on bed evolution, analyzing configurations where the structure is either attached to the sidewall or positioned at the centerline of the wave flume. The first numerical method treats sediment particles as a distinct continuum phase, directly solving the continuity and momentum equations for both sediment and fluid phases. The second method estimates sediment transport using the quadratic law of bottom shear stress, yielding robust predictions of bed evolution through meticulous calibration and validation. The findings reveal that both methods underestimate vortex-induced near-bed vertical velocities. Deposits formed along vortex trajectories are overestimated by the first method, while the second method satisfactorily predicts the bed evolution beneath these paths. Scour holes caused by wave impingement tend to backfill as the flow intensity diminishes. The second method cannot sufficiently capture this backfilling, whereas the first method adequately reflects the phenomenon. Overall, this study highlights significant variations in the predictive capabilities of both methods in regard to the evolution of non-equilibrium scour at low Keulegan–Carpenter numbers.
-
ArticleFiber-optic seismic sensing of vadose zone soil moisture dynamics(Nature Research, 2024-08-05)Vadose zone soil moisture is often considered a pivotal intermediary water reservoir between surface and groundwater in semi-arid regions. Understanding its dynamics in response to changes in meteorologic forcing patterns is essential to enhance the climate resiliency of our ecological and agricultural system. However, the inability to observe high-resolution vadose zone soil moisture dynamics over large spatiotemporal scales hinders quantitative characterization. Here, utilizing pre-existing fiber-optic cables as seismic sensors, we demonstrate a fiber-optic seismic sensing principle to robustly capture vadose zone soil moisture dynamics. Our observations in Ridgecrest, California reveal sub-seasonal precipitation replenishments and a prolonged drought in the vadose zone, consistent with a zero-dimensional hydrological model. Our results suggest a significant water loss of 0.25 m/year through evapotranspiration at our field side, validated by nearby eddy-covariance based measurements. Yet, detailed discrepancies between our observations and modeling highlight the necessity for complementary in-situ validations. Given the escalated regional drought risk under climate change, our findings underscore the promise of fiber-optic seismic sensing to facilitate water resource management in semi-arid regions.
-
ArticleMeltwater orientations modify seismic anisotropy in temperate ice(American Geophysical Union, 2024-07-04)Seismology is increasingly used to infer the magnitude and direction of glacial ice flow. However, the effects of interstitial meltwater on seismic properties remain poorly constrained. Here, we extend previous studies on seismic anisotropy in temperate ices to consider the role of melt preferred orientation (MPO). We used the ELLE numerical toolbox to simulate microstructural shear deformation of temperate ice with variable MPO strength and orientation, and calculated the effective seismic properties of these numerical ice-melt aggregates. Our models demonstrate that even 3.5% melt volume is sufficient to rotate fast directions by up to 90°, to increase Vp anisotropy by up to +110%, and to modify Vs anisotropy by −9 to +36%. These effects are especially prominent at strain rates ≥3.17 × 10−12 s−1. MPO may thus obscure the geophysical signatures of temperate ice flow in regions of rapid ice discharge, and is therefore pivotal for understanding ice mass loss.
-
ArticleMulticellular magnetotactic bacteria are genetically heterogeneous consortia with metabolically differentiated cells(Public Library of Science, 2024-07-11)Consortia of multicellular magnetotactic bacteria (MMB) are currently the only known example of bacteria without a unicellular stage in their life cycle. Because of their recalcitrance to cultivation, most previous studies of MMB have been limited to microscopic observations. To study the biology of these unique organisms in more detail, we use multiple culture-independent approaches to analyze the genomics and physiology of MMB consortia at single-cell resolution. We separately sequenced the metagenomes of 22 individual MMB consortia, representing 8 new species, and quantified the genetic diversity within each MMB consortium. This revealed that, counter to conventional views, cells within MMB consortia are not clonal. Single consortia metagenomes were then used to reconstruct the species-specific metabolic potential and infer the physiological capabilities of MMB. To validate genomic predictions, we performed stable isotope probing (SIP) experiments and interrogated MMB consortia using fluorescence in situ hybridization (FISH) combined with nanoscale secondary ion mass spectrometry (NanoSIMS). By coupling FISH with bioorthogonal noncanonical amino acid tagging (BONCAT), we explored their in situ activity as well as variation of protein synthesis within cells. We demonstrate that MMB consortia are mixotrophic sulfate reducers and that they exhibit metabolic differentiation between individual cells, suggesting that MMB consortia are more complex than previously thought. These findings expand our understanding of MMB diversity, ecology, genomics, and physiology, as well as offer insights into the mechanisms underpinning the multicellular nature of their unique lifestyle.
-
ArticleInhabitation of bathyal hydrocarbon seeps by early-branching benthic foraminifera: Implications for Neo-Proterozoic ecosystem functioning(Cushman Foundation for Foraminiferal Research, 2024-07-26)Little is known about mechanisms allowing agglutinated and thecate (i.e., organic-walled) foraminifera associated with extreme environments to survive. Here, we present cytological observations of organic-walled and agglutinated monothalamid and milioline tubothalamids collected from sulfur-oxidizing microbial mats of Gulf of Mexico hydrocarbon seeps. This is the first ultrastructural analysis of allogromids, a basal group of organic-walled thecate foraminifera, from seeps. We show most allogromids contained numerous ingested bacteria of various forms; organelle abundance and distribution varied among their morphotypes. Saccaminids (agglutinated monothalamids) had abundant phagocytosed bacteria, including putative methanotrophic and sulfur-oxidizing bacteria, indicating foraminiferal activity in seeps. A porcelaneous tubothalamid morphotype contained phagocytosed bacteria of one morphology, suggesting food selectivity. Increasing our knowledge of the cytology and ecology of these modern representatives of early-evolving foraminifera could help elucidate their evolutionary history. Thus, we augment understanding of extremophile foraminifera, adding to our burgeoning understanding of microeukaryote protists and microfossil adaptations.
-
ArticleHazardous explosive eruptions of a recharging multi-cyclic island arc caldera(Nature Research, 2024-03-25)Caldera-forming eruptions of silicic volcanic systems are among the most devastating events on Earth. By contrast, post-collapse volcanic activity initiating new caldera cycles is generally considered less hazardous. Formed after Santorini’s latest caldera-forming eruption of ~1600 bce, the Kameni Volcano in the southern Aegean Sea enables the eruptive evolution of a recharging multi-cyclic caldera to be reconstructed. Kameni’s eruptive record has been documented by onshore products and historical descriptions of mainly effusive eruptions dating back to 197 bce. Here we combine high-resolution seismic reflection data with cored lithologies from International Ocean Discovery Program Expedition 398 at four sites to determine the submarine architecture and volcanic history of intra-caldera deposits from Kameni. Our shore-crossing analysis reveals the deposits of a submarine explosive eruption that produced up to 3.1 km3 of pumice and ash, which we relate to a historical eruption in 726 ce. The estimated volcanic explosivity index of magnitude 5 exceeds previously considered worst-case eruptive scenarios for Santorini. Our finding that the Santorini caldera is capable of producing large explosive eruptions at an early stage in the caldera cycle implies an elevated hazard potential for the eastern Mediterranean region, and potentially for other recharging silicic calderas.
-
ArticleND70 series basaltic glass reference materials for volatile element (H2O, CO2, S, Cl, F) measurement and the C ionisation efficiency suppression effect of water in silicate glasses in SIMS(Wiley, 2024-07-25)We present a new set of reference materials, the ND70-series, for in situ measurement of volatile elements (H2O, CO2, S, Cl, F) in silicate glass of basaltic composition. The materials were synthesised in piston cylinders at pressures of 1 to 1.5 GPa under volatile-undersaturated conditions. They span mass fractions from 0 to 6% m/m H2O, from 0 to 1.6% m/m CO2 and from 0 to 1% m/m S, Cl and F. The materials were characterised by elastic recoil detection analysis for H2O, by nuclear reaction analysis for CO2, by elemental analyser for CO2, by Fourier transform infrared spectroscopy for H2O and CO2, by secondary ion mass spectrometry for H2O, CO2, S, Cl and F, and by electron probe microanalysis for CO2, S, Cl and major elements. Comparison between expected and measured volatile amounts across techniques and institutions is excellent. It was found however that SIMS measurements of CO2 mass fractions using either Cs+ or O− primary beams are strongly affected by the glass H2O content. Reference materials have been made available to users at ion probe facilities in the US, Europe and Japan. Remaining reference materials are preserved at the Smithsonian National Museum of Natural History where they are freely available on loan to any researcher.
-
ArticleChanges in oceanic radiocarbon and CFCs Since the 1990s(American Geophysical Union, 2024-07-09)Anthropogenic perturbations from fossil fuel burning, nuclear bomb testing, and chlorofluorocarbon (CFC) use have created useful transient tracers of ocean circulation. The atmospheric 14C/C ratio (∆14C) peaked in the early 1960s and has decreased now to pre-industrial levels, while atmospheric CFC-11 and CFC-12 concentrations peaked in the early 1990s and early 2000s, respectively, and have now decreased by 10%–20%. We present the first analysis of a decade of new observations (2007 to 2018–2019) and give a comprehensive overview of the changes in ocean ∆14C and CFC concentration since the WOCE surveys in the 1990s. Surface ocean ∆14C decreased at a nearly constant rate from the 1990–2010s (20‰/decade). In most of the surface ocean ∆14C is higher than in atmospheric CO2 while in the interior ocean, only a few places are found to have increases in ∆14C, indicating that globally, oceanic bomb 14C uptake has stopped and reversed. Decreases in surface ocean CFC-11 started between the 1990 and 2000s, and CFC-12 between the 2000–2010s. Strong coherence in model biases of decadal changes in all tracers in the Southern Ocean suggest ventilation of Antarctic Intermediate Water was enhanced from the 1990 to the 2000s, whereas ventilation of Subantarctic Mode Water was enhanced from the 2000 to the 2010s. The decrease in surface tracers globally between the 2000 and 2010s is consistently stronger in observations than in models, indicating a reduction in vertical transport and mixing due to stratification.
-
ArticleLate cretaceous uplift of Grand Canyon: Evidence from fluid inclusions(Scientific Research Publishing, 2024-05-24)For over a century, the history of Grand Canyon has been of interest to many. In recent years, debates have centered around the hypothesis that Grand Canyon formed during the late Cretaceous, not the Miocene, as previously thought. In this study, fluid inclusions within carbonates from the Mauv, Redwall, Supai, and Kaibab Fms. from Grand Canyon yield entrapment temperatures between 135 and 60 °C. Comparison of these temperature to time-temperature histories based on thermochronology (U-Th/He and fission track) from nearby samples suggest that these carbonates had fluids trapped within them from 89 to 58 Ma and that major denudation of late Cretaceous strata occurred during this interval. Regionally derived burial histories and local thermochronology suggest that significant uplift of Grand Canyon and the adjacent Colorado Plateau occurred during the late Cretaceous. We interpret the timing of fluid entrapment, denudation of Cretaceous strata, and burial histories to be consistent with initial uplift associated with the early stages of formation of Grand Canyon during the late Cretaceous. Models of uplift of northern Arizona exclusively during the Cenozoic are inconsistent with these data.
-
ArticleMafic slab melt contributions to Proterozoic massif-type anorthosites(American Association for the Advancement of Science, 2024-08-14)Massif-type anorthosites, enormous and enigmatic plagioclase-rich cumulate intrusions emplaced into Earth’s crust, formed in large numbers only between 1 and 2 billion years ago. Conflicting hypotheses for massif-type anorthosite formation, including melting of upwelling mantle, lower crustal melting, and arc magmatism above subduction zones, have stymied consensus on what parental magmas crystallized the anorthosites and why the rocks are temporally restricted. Using B, O, Nd, and Sr isotope analyses, bulk chemistry, and petrogenetic modeling, we demonstrate that the magmas parental to the Marcy and Morin anorthosites, classic examples from North America’s Grenville orogen, require large input from mafic melts derived from slab-top altered oceanic crust. The anorthosites also record B isotopic signatures corresponding to other slab lithologies such as subducted abyssal serpentinite. We propose that anorthosite massifs formed underneath convergent continental margins wherein a subducted or subducting slab melted extensively and link massif-type anorthosite formation to Earth’s thermal and tectonic evolution.
-
ArticleInvestigation of suspected Holocene fault scarp near Montréal, Québec:tThe first paleoseismic trench in eastern Canada(Seismica, 2024-07-25)Québec has experienced historical damaging earthquakes in several seismic zones (eg 1732 M5.8 Montréal, 1663 M7 Charlevoix, 1935 M6.2 Témiscamingue). Despite a high seismicity rate, no surface-rupturing faults have been discovered due to a combination of dense vegetation cover, recent glaciation, sparse earthquake records, and low regional strain rates. We manually searched lidar-derived digital elevation models (DEMs) of the region to search for potential post-glacial surface-rupturing faults across southern Québec and identified a scarp ~50km north of Montréal. We performed three geophysical surveys (ground penetrating radar, depth estimates from ambient seismic noise, and refraction seismology) that revealed a buried scarp, confirmed with a <1 m-deep hand-dug test pit. These observations convinced us to excavate the first paleoseismic trench in Quebec to test for the presence of a surface-rupturing fault in July 2023. We found a glacial diamict containing no signs of syn- or post-glacial deformation. In this paper, we present the observations that led to the identification of a scarp and hypothesized faulting. We highlight the importance of trenching to confirm recent fault scarps in challenging environments. We hope our study can be used to optimize future paleoseismic research in the province of Quebec and similar intracratonic glaciated landscapes.
-
ArticleSustaining hydrothermal circulation with gravity relevant to ocean worlds(American Geophysical Union, 2024-06-24)Some ocean worlds may sustain active, seafloor hydrothermal systems, but the characteristics and controls on fluid-heat transport in these systems are not well understood. We developed three-dimensional numerical simulations, using a ridge-flank hydrothermal system on Earth as a reference, to test the influence of ocean world gravity on fluid and heat transport. Simulations represented the upper ∼4–5 km below the seafloor and explored ranges of: heat input at the base, aquifer thickness, depth, and permeability, and gravity values appropriate for Earth, Europa, and Enceladus. We tested when a hydrothermal siphon could be sustained and quantified consequent circulation temperatures, flow rates, and advective heat output. Calculations illustrate a trade-off in energy between the reduction of buoyancy at lower gravity, which tends to reduce the primary forces driving fluid circulation, and the concomitant reduction in secondary convection, which consumes available energy. When a siphon was sustained under lower gravity, circulation temperatures tended to increase modestly (which should lead to more extensive geochemical reactions), whereas mass flow rates and advective heat output tended to be reduced. Deeper subseafloor circulation resulted in higher temperatures and flow rates, with a deeper, thin aquifer being more efficient in removing heat from the rocky interior. Water-rock ratios were lower when gravity was lower, as was the efficiency of heat extraction, whereas the time required to circulate the volume of an ocean-world's ocean through the seafloor increased. This may help to explain how small ocean worlds could sustain hydrothermal circulation for a long time despite limited heat sources.
-
ArticleMineralization kinetics of biosiliceous sediments in hot subseafloors(Geochemical Society, 2024-07-14)Temperature affects the timing of the transformation of amorphous silica (opal-A) into crystalline (opal-CT) exponentially. Thus, in hot subseafloor environments opal-A is expected to convert into opal-CT at relatively shallow burial depths, where in situ temperatures do not exceed ∼56 °C, as it has been previously observed at various deep-sea sites and in onshore rock outcrops as well as assessed during lab experiments. The response of biosilica (biogenic opal-A) diagenesis to steep geothermal gradients (∼224–529 °C/km) at extremely high sedimentation rates (∼1 m/kyr) was examined in cores from off-axis boreholes drilled by the International Ocean Discovery Program (IODP) Expedition 385 in the actively spreading, intrusive sill-riddled Guaymas Basin at the Gulf of California (Mexico) rifted margin. At three sites drilled by IODP Expedition 385 (U1545, U1546, and U1547), the conversion from amorphous opal (−A) to crystalline opal (−CT) occurs in relatively deep (up to ∼330 mbsf) and unexpectedly hot (in situ temperatures of ∼74–79 °C) subseafloor conditions. This observation indicates a significantly slower reaction kinetics of biosilica transformation than previously reported. A compilation of empirical data that include biosiliceous basins with a similarly hot subseafloor (Sea of Japan and Bering Sea) yield new kinetic parameters that account for the slower rates of silica transformation. Thus, current kinetic models for the prediction of opal-A to −CT conversion face limitations when burial rates exceed those typical of biogenic sedimentation in open-ocean conditions. At Guaymas Basin Site U1545, where there is no evidence of sill-related metamorphic overprint, the d-spacing of the opal-CT (1 0 1) peak correlates linearly with in situ temperature between ∼75 and 110 °C throughout the opal-CT zone, thus, providing a local silica paleothermometry proxy that can be used to calculate the maximum temperature to which opal-CT sediment has been subjected.
-
ArticleIntensified currents associated with benthic storms underneath an eddying jet(American Geophysical Union, 2024-07-08)Benthic storms are episodes of intensified near-bottom currents capable of sediment resuspension in the deep ocean. They typically occur under regions of high surface eddy kinetic energy (EKE), such as the Gulf Stream. Although they have long been observed, the mechanism(s) responsible for their formation and their relationships with salient features of the deep ocean, such as bottom mixed layers (BMLs) and benthic nepheloid layers (BNLs), remain poorly understood. Here we conduct idealized experiments with a primitive-equation model to explore the impacts of the unforced instability of a surface-intensified jet on near-bottom flows of a deep zonal channel. Vertical resolution is increased near the bottom to represent the bottom boundary layer. We find that the unstable near-surface jet develops meanders and evolves into alternating, deep-reaching cyclones and anticyclones. Simultaneously, EKE increases near the bottom due to the convergence of vertical eddy pressure fluxes, leading to near-bottom currents comparable to those observed during benthic storms. These currents in turn form BMLs with thickness of O(100 m) from enhanced velocity shears and turbulence production near the bottom. The deep cyclonic eddies transport fluid particles both laterally and vertically, from near the bottom through the entire BML and may contribute to the formation of the lower part of BNLs. A sloping bottom reduces both the intensity of the near-bottom currents and the extent of vertical transport. Overall, our study highlights a significant response of the abyssal environment to near-surface current instability, with potential implications for sediment transport in the deep ocean.
-
ArticleA reciprocity‐based efficient method for improved source parameter estimation of submarine earthquakes with hybrid 3‐D teleseismic Green’s functions(American Geophysical Union, 2024-05-08)Accurate source parameters of global submarine earthquakes are essential for understanding earthquake mechanics and tectonic dynamics. Previous studies have demonstrated that teleseismic P coda waveform complexities due to near-source 3-D structures are highly sensitive to source parameters of marine earthquakes. Leveraging these sensitivities, we can improve the accuracy of source parameter inversion compared to traditional 1-D methods. However, modeling these intricate 3-D effects poses significant computational challenges. To address this issue, we propose a novel reciprocity-based hybrid method for computing 3-D teleseismic Green's functions. Based on this method, we develop a grid-search inversion workflow for determining reliable source parameters of moderate-sized submarine earthquakes. The method is tested and proven on five Mw5+ earthquakes at the Blanco oceanic transform fault (OTF) with ground truth locations resolved by a local ocean bottom seismometer array, using ambient noise correlation and surface-wave relocation techniques. Our results show that fitting P coda waveforms through 3-D Green's functions can effectively improve the source location accuracy, especially for the centroid depth. Our improved centroid depths indicate that all the five Mw5+ earthquakes on the Blanco transform fault ruptured mainly above the depth of 600°C isotherm predicted by the half-space cooling model. This finding aligns with the hypothesis that the rupture zone of large earthquakes at OTFs is confined by the 600°C isotherm. However, it is noted that the Blanco transform fault serves as a case study. Our 3-D source inversion method offers a promising tool for systematically investigating global oceanic earthquakes using teleseismic waves.
-
ArticleNitrogen isotope homogenization of dissolved ammonium through depth and 15N enrichment of ammonium during the incorporation into expandable layer silicates occurred in organic-rich marine sediment from Guaymas Basin, Gulf of California(Elsevier, 2024-06-01)Sedimentary nitrogen isotopic ratios are used as a proxy for ancient biogeochemical cycles on Earth's surface. It is generally accepted that sediment hole tops record primary signatures because organic nitrogen (ON) is predominant in this part of the hole. In contrast to such early to middle diagenetic stages, it is well known that heavier nitrogen isotope 15N tends to enrich in sedimentary rocks during later diagenetic and metamorphic stages. However, there are some critical gaps in our understanding of nitrogen isotopic alteration associated with abiotic processes during early-middle diagenesis. In this study, we examined the isotope ratios of ammonium nitrogen in interstitial water (IW) and total nitrogen (TN), including exchangeable ammonium and mineral nitrogen, in the solid-phase of organic-rich-sediment recovered by International Ocean Discovery Program (IODP) Expedition 385 cores drilled in the Guaymas Basin, Gulf of California, that contained ammonium-rich IW. The isotopic ratios (δ15N value) of TN are the most variable with depth compared to any other type of nitrogen. This variation can be interpreted as reflecting changes in the water mass environment in the basin caused by glacial–interglacial climate changes, modifying the δ15N values of the marine primary producers. Thus, the δ15N value of TN is a proxy for environmental change in the basin, while each component of TN shows different trends. The δ15N values of IW and exchangeable ammonium did not exhibit significant changes with depth, but the latter values are about 3 ‰ enriched in 15N. This may be due to advective transport of solute into adjacent layers followed by the formation of an isotopic equilibrium between IW and exchangeable ammonium in the case of fast sediment accumulation rate. The δ15N value of exchangeable ammonium is the highest among the other types of nitrogen with one exception, where the δ15N value of TN is the highest. The calculated δ15N values of ON based on mass balance are almost the same as those of associated TN in the shallow sediment layers (< 150 m below seafloor), but the difference in the δ15N values of TN and ON are significant in the deeper layers, where proportions of ON contents are <50%. In particular, in the layer where the δ15N value of TN is the highest, that of ON shows an even higher value and the difference reaches 3.5 ‰. The δ15N values of mineral nitrogen are similar to that of IW ammonium except the surface layers. Under such conditions, when δ15N value of TN is intermediate between those of mineral nitrogen and exchangeable ammonium, calculated δ15N value of ON is close to that of TN. On the other hand, if δ15N value of TN is out of the range between mineral nitrogen and exchangeable ammonium, it causes further difference in δ15N value of ON. It means that the fluctuation of δ15N values of TN is reduced relative to those of ON through depth. It has been considered that δ15N value of TN in sediment is similar to that of ON, and changes in the δ15N value of TN due to diagenesis are limited, but in such environment ON fluctuations over depth may be slightly underestimated.
-
ArticleDevelopment of a quantum cascade laser absorption spectrometer for simultaneous measurement of 13C-18O and 18O-18O clumping in CO2(Wiley, 2024-06-18)Dual clumped isotope paleothermometry determines carbonate formation temperatures by measuring the frequency of 13C–18O (∆638) and 18O–18O (∆828) pairs in carbonates. It resolves isotopic kinetic biases and thus enables more accurate paleotemperature reconstructions. However, high-precision measurements of 18O–18O clumping using current techniques requires large sample sizes and long acquisition times. We developed a mid-infrared isotope ratio laser spectrometer (IRLS) for simultaneous measurement of the isotopologue ratios ∆638 and ∆828 in gas-phase carbon dioxide (CO2) at room temperature. Our IRLS uses a single laser scanning from 2290.7 to 2291.1 cm−1 and a 31 m pathlength optical cell, and it simultaneously measures the five isotopologues required for calculating ∆638 and ∆828: 16O12C16O, 16O13C16O, 16O12C18O, 16O13C18O, and 18O12C18O. In addition, our IRLS can measure 16O12C17O, enabling ∆17O analysis. At ~20°C and a CO2 pressure of ~2 Torr, our IRLS system achieved precisions of 0.128‰ and 0.140‰ within 20 s for abundances of the clumped isotopologues 16O13C18O and 18O12C18O, respectively, and precisions of 0.267‰, 0.245‰, and 0.128‰ for 16O12C16O, 16O13C16O, and 16O12C18O. This yielded precisions of 0.348‰ (∆638) and 0.302‰ (∆828) within 25 s. Simulated sample–reference switching highlights the potential of our system and the need for further development. We demonstrated simultaneous measurements of ∆638 and ∆828 in CO2 to precisions of <0.35‰ within 25 s using a room-temperature, single-laser IRLS. Future developments on better resolving 16O12C16O and 16O13C16O peaks and system temperature control could further improve the measurement precision.