Geology and Geophysics (G&G)

Permanent URI for this collection

Scientists in the G&G Department seek knowledge of the structure, composition, and dynamics of the earth’s interior, the origin and evolution of the earth’s crust, controls on ocean and climate change on time scales of decades to 100 million years, and processes of mass and energy transfer at the land-sea interface.

Browse

Recent Submissions

Now showing 1 - 20 of 1840
  • Article
    Neurodiversity: An important axis of diversity in ocean sciences
    (Oceanography Society, 2023-12-05) Wilson, Jamie D. ; Sibert, Elizabeth ; Grigoratou, Maria ; Jones, Chloe L.C. ; Rubin, Leah ; Smillie, Zeinab
    Neurodiversity refers to variations in the human brain that affect information processing; it includes conditions, or “neurotypes,” such as autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), dyslexia, dyscalculia, and dyspraxia, among others. Neurodiversity can be conceptualized as significant differences in the ways that individuals process information; such differences may concern written or verbal language, sensory information, body language, or social interactions. These differences have been historically viewed within the medical model of disability, for example, as deficits in ability through a diagnosed condition, often associated with a goal of curing or managing the condition.
  • Article
    Deeper and stronger North Atlantic Gyre during the Last Glacial Maximum
    (Nature Research, 2024-07-10) Wharton, Jack H. ; Renoult, Martin ; Gebbie, Geoffrey A. ; Keigwin, Lloyd D. ; Marchitto, Thomas M. ; Maslin, Mark A. ; Oppo, Delia W. ; Thornalley, David J. R.
    Subtropical gyre (STG) depth and strength are controlled by wind stress curl and surface buoyancy forcing1,2. Modern hydrographic data reveal that the STG extends to a depth of about 1 km in the Northwest Atlantic, with its maximum depth defined by the base of the subtropical thermocline. Despite the likelihood of greater wind stress curl and surface buoyancy loss during the Last Glacial Maximum (LGM)3, previous work suggests minimal change in the depth of the glacial STG4. Here we show a sharp glacial water mass boundary between 33° N and 36° N extending down to between 2.0 and 2.5 km—approximately 1 km deeper than today. Our findings arise from benthic foraminiferal δ18O profiles from sediment cores in two depth transects at Cape Hatteras (36–39° N) and Blake Outer Ridge (29–34° N) in the Northwest Atlantic. This result suggests that the STG, including the Gulf Stream, was deeper and stronger during the LGM than at present, which we attribute to increased glacial wind stress curl, as supported by climate model simulations, as well as greater glacial production of denser subtropical mode waters (STMWs). Our data suggest (1) that subtropical waters probably contributed to the geochemical signature of what is conventionally identified as Glacial North Atlantic Intermediate Water (GNAIW)5,6,7 and (2) the STG helped sustain continued buoyancy loss, water mass conversion and northwards meridional heat transport (MHT) in the glacial North Atlantic.
  • Article
    A reciprocity‐based efficient method for improved source parameter estimation of submarine earthquakes with hybrid 3‐D teleseismic Green’s functions
    (American Geophysical Union, 2024-05-08) Zang, Chong ; Wu, Wenbo ; Ni, Sidao ; Xu, Min
    Accurate source parameters of global submarine earthquakes are essential for understanding earthquake mechanics and tectonic dynamics. Previous studies have demonstrated that teleseismic P coda waveform complexities due to near-source 3-D structures are highly sensitive to source parameters of marine earthquakes. Leveraging these sensitivities, we can improve the accuracy of source parameter inversion compared to traditional 1-D methods. However, modeling these intricate 3-D effects poses significant computational challenges. To address this issue, we propose a novel reciprocity-based hybrid method for computing 3-D teleseismic Green's functions. Based on this method, we develop a grid-search inversion workflow for determining reliable source parameters of moderate-sized submarine earthquakes. The method is tested and proven on five Mw5+ earthquakes at the Blanco oceanic transform fault (OTF) with ground truth locations resolved by a local ocean bottom seismometer array, using ambient noise correlation and surface-wave relocation techniques. Our results show that fitting P coda waveforms through 3-D Green's functions can effectively improve the source location accuracy, especially for the centroid depth. Our improved centroid depths indicate that all the five Mw5+ earthquakes on the Blanco transform fault ruptured mainly above the depth of 600°C isotherm predicted by the half-space cooling model. This finding aligns with the hypothesis that the rupture zone of large earthquakes at OTFs is confined by the 600°C isotherm. However, it is noted that the Blanco transform fault serves as a case study. Our 3-D source inversion method offers a promising tool for systematically investigating global oceanic earthquakes using teleseismic waves.
  • Article
    Nitrogen isotope homogenization of dissolved ammonium through depth and 15N enrichment of ammonium during the incorporation into expandable layer silicates occurred in organic-rich marine sediment from Guaymas Basin, Gulf of California
    (Elsevier, 2024-06-01) Yamanaka, Toshiro ; Sakamoto, Arisa ; Kiyokawa, Kanon ; Jo, Jaeguk ; Onishi, Yuji ; Kuwahara, Yoshihiro ; Kim, Jihoon ; Pastor, Lucie C. ; Teske, Andreas P. ; Lizarralde, Daniel ; Hofig, Tobias W. ; IODP Expedition 385 Scientists
    Sedimentary nitrogen isotopic ratios are used as a proxy for ancient biogeochemical cycles on Earth's surface. It is generally accepted that sediment hole tops record primary signatures because organic nitrogen (ON) is predominant in this part of the hole. In contrast to such early to middle diagenetic stages, it is well known that heavier nitrogen isotope 15N tends to enrich in sedimentary rocks during later diagenetic and metamorphic stages. However, there are some critical gaps in our understanding of nitrogen isotopic alteration associated with abiotic processes during early-middle diagenesis. In this study, we examined the isotope ratios of ammonium nitrogen in interstitial water (IW) and total nitrogen (TN), including exchangeable ammonium and mineral nitrogen, in the solid-phase of organic-rich-sediment recovered by International Ocean Discovery Program (IODP) Expedition 385 cores drilled in the Guaymas Basin, Gulf of California, that contained ammonium-rich IW. The isotopic ratios (δ15N value) of TN are the most variable with depth compared to any other type of nitrogen. This variation can be interpreted as reflecting changes in the water mass environment in the basin caused by glacial–interglacial climate changes, modifying the δ15N values of the marine primary producers. Thus, the δ15N value of TN is a proxy for environmental change in the basin, while each component of TN shows different trends. The δ15N values of IW and exchangeable ammonium did not exhibit significant changes with depth, but the latter values are about 3 ‰ enriched in 15N. This may be due to advective transport of solute into adjacent layers followed by the formation of an isotopic equilibrium between IW and exchangeable ammonium in the case of fast sediment accumulation rate. The δ15N value of exchangeable ammonium is the highest among the other types of nitrogen with one exception, where the δ15N value of TN is the highest. The calculated δ15N values of ON based on mass balance are almost the same as those of associated TN in the shallow sediment layers (< 150 m below seafloor), but the difference in the δ15N values of TN and ON are significant in the deeper layers, where proportions of ON contents are <50%. In particular, in the layer where the δ15N value of TN is the highest, that of ON shows an even higher value and the difference reaches 3.5 ‰. The δ15N values of mineral nitrogen are similar to that of IW ammonium except the surface layers. Under such conditions, when δ15N value of TN is intermediate between those of mineral nitrogen and exchangeable ammonium, calculated δ15N value of ON is close to that of TN. On the other hand, if δ15N value of TN is out of the range between mineral nitrogen and exchangeable ammonium, it causes further difference in δ15N value of ON. It means that the fluctuation of δ15N values of TN is reduced relative to those of ON through depth. It has been considered that δ15N value of TN in sediment is similar to that of ON, and changes in the δ15N value of TN due to diagenesis are limited, but in such environment ON fluctuations over depth may be slightly underestimated.
  • Article
    Development of a quantum cascade laser absorption spectrometer for simultaneous measurement of 13C-18O and 18O-18O clumping in CO2
    (Wiley, 2024-06-18) Wieman, Scott T. ; Kapit, Jason ; Michel, Anna P. M. ; Guo, Weifu
    Dual clumped isotope paleothermometry determines carbonate formation temperatures by measuring the frequency of 13C–18O (∆638) and 18O–18O (∆828) pairs in carbonates. It resolves isotopic kinetic biases and thus enables more accurate paleotemperature reconstructions. However, high-precision measurements of 18O–18O clumping using current techniques requires large sample sizes and long acquisition times. We developed a mid-infrared isotope ratio laser spectrometer (IRLS) for simultaneous measurement of the isotopologue ratios ∆638 and ∆828 in gas-phase carbon dioxide (CO2) at room temperature. Our IRLS uses a single laser scanning from 2290.7 to 2291.1 cm−1 and a 31 m pathlength optical cell, and it simultaneously measures the five isotopologues required for calculating ∆638 and ∆828: 16O12C16O, 16O13C16O, 16O12C18O, 16O13C18O, and 18O12C18O. In addition, our IRLS can measure 16O12C17O, enabling ∆17O analysis. At ~20°C and a CO2 pressure of ~2 Torr, our IRLS system achieved precisions of 0.128‰ and 0.140‰ within 20 s for abundances of the clumped isotopologues 16O13C18O and 18O12C18O, respectively, and precisions of 0.267‰, 0.245‰, and 0.128‰ for 16O12C16O, 16O13C16O, and 16O12C18O. This yielded precisions of 0.348‰ (∆638) and 0.302‰ (∆828) within 25 s. Simulated sample–reference switching highlights the potential of our system and the need for further development. We demonstrated simultaneous measurements of ∆638 and ∆828 in CO2 to precisions of <0.35‰ within 25 s using a room-temperature, single-laser IRLS. Future developments on better resolving 16O12C16O and 16O13C16O peaks and system temperature control could further improve the measurement precision.
  • Article
    Global ocean cooling of 2.3°C during the last glacial maximum
    (American Geophysical Union, 2024-05-08) Seltzer, Alan M. ; Davidson, Perrin W. ; Shackleton, Sarah A. ; Nicholson, David P. ; Khatiwala, Samar
    Quantitative constraints on past mean ocean temperature (MOT) critically inform our historical understanding of Earth's energy balance. A recently developed MOT proxy based on paleoatmospheric Xe, Kr, and N2 ratios in ice core air bubbles is a promising tool rooted in the temperature dependences of gas solubilities. However, these inert gases are systematically undersaturated in the modern ocean interior, and it remains unclear how air-sea disequilibrium may have changed in the past. Here, we carry out 30 tracer-enabled model simulations under varying circulation, sea ice cover, and wind stress regimes to evaluate air-sea disequilibrium in the Last Glacial Maximum (LGM) ocean. We find that undersaturation of all three gases was likely reduced, primarily due to strengthened high-latitude winds, biasing reconstructed MOT by −0.38 ± 0.37°C (1σ). Accounting for air-sea disequilibrium, paleoatmospheric inert gases indicate that LGM MOT was 2.27 ± 0.46°C (1σ) colder than the pre-industrial era.
  • Article
    NEWTS1.0: numerical model of coastal erosion by waves and transgressive scarps
    (European Geosciences Union, 2024-04-30) Palermo, Rose V. ; Perron, J. Taylor ; Soderblom, Jason M. ; Birch, Samuel P. D. ; Hayes, Alexander G. ; Ashton, Andrew D.
    Models of rocky-coast erosion help us understand the physical phenomena that control coastal morphology and evolution, infer the processes shaping coasts in remote environments, and evaluate risk from natural hazards and future climate change. Existing models, however, are highly complex, are computationally expensive, and depend on many input parameters; this limits our ability to explore planform erosion of rocky coasts over long timescales (thousands to millions of years) and over a range of conditions. In this paper, we present a simplified cellular model of coastline evolution in closed basins through uniform erosion and wave-driven erosion. Uniform erosion is modeled as a constant rate of retreat. Wave erosion is modeled as a function of fetch, the distance over which the wind blows to generate waves, and the angle between the incident wave and the shoreline. This reduced-complexity model can be used to evaluate how a detachment-limited coastal landscape reflects climate, sea-level history, material properties, and the relative influence of different erosional processes.
  • Article
    Signatures of wave erosion in Titan’s coasts
    (American Association for the Advancement of Science, 2024-05-13) Palermo, Rose V. ; Ashton, Andrew D. ; Soderblom, Jason M. ; Birch, Samuel P. D. ; Hayes, Alexander G. ; Perron, J. Taylor
    The shorelines of Titan’s hydrocarbon seas trace flooded erosional landforms such as river valleys; however, it is unclear whether coastal erosion has subsequently altered these shorelines. Spacecraft observations and theoretical models suggest that wind may cause waves to form on Titan’s seas, potentially driving coastal erosion, but the observational evidence of waves is indirect, and the processes affecting shoreline evolution on Titan remain unknown. No widely accepted framework exists for using shoreline morphology to quantitatively discern coastal erosion mechanisms, even on Earth, where the dominant mechanisms are known. We combine landscape evolution models with measurements of shoreline shape on Earth to characterize how different coastal erosion mechanisms affect shoreline morphology. Applying this framework to Titan, we find that the shorelines of Titan’s seas are most consistent with flooded landscapes that subsequently have been eroded by waves, rather than a uniform erosional process or no coastal erosion, particularly if wave growth saturates at fetch lengths of tens of kilometers.
  • Article
    Plasmid-borne biosynthetic gene clusters within a permanently stratified marine water column
    (MDPI, 2024-05-02) Mara, Paraskevi ; Geller-McGrath, David ; Suter, Elizabeth A. ; Taylor, Gordon T. ; Pachiadaki, Maria G. ; Edgcomb, Virginia P.
    Plasmids are mobile genetic elements known to carry secondary metabolic genes that affect the fitness and survival of microbes in the environment. Well-studied cases of plasmid-encoded secondary metabolic genes in marine habitats include toxin/antitoxin and antibiotic biosynthesis/resistance genes. Here, we examine metagenome-assembled genomes (MAGs) from the permanently-stratified water column of the Cariaco Basin for integrated plasmids that encode biosynthetic gene clusters of secondary metabolites (smBGCs). We identify 16 plasmid-borne smBGCs in MAGs associated primarily with Planctomycetota and Pseudomonadota that encode terpene-synthesizing genes, and genes for production of ribosomal and non-ribosomal peptides. These identified genes encode for secondary metabolites that are mainly antimicrobial agents, and hence, their uptake via plasmids may increase the competitive advantage of those host taxa that acquire them. The ecological and evolutionary significance of smBGCs carried by prokaryotes in oxygen-depleted water columns is yet to be fully elucidated.
  • Article
    SISALv3: a global speleothem stable isotope and trace element database
    (Copernicus Publications, 2024-04-26) Kaushal, Nikita ; Lechleitner, Franziska A. ; Wilhelm, Micah ; Azennoud, Khalil ; Buhler, Janica C. ; Braun, Kerstin ; Brahim, Yassine Ait ; Baker, Andy ; Burstyn, Yuval ; Comas-Bru, Laia ; Fohlmeister, Jens ; Goldsmith, Yonaton ; Harrison, Sandy P. ; Hatvani, István G. ; Rehfeld, Kira ; Ritzau, Magdalena ; Skiba, Vanessa ; Stoll, Heather M. ; Szucs, Jozsef G. ; Tanos, Peter ; Treble, Pauline C. ; Azevedo, Vitor ; Baker, Jonathan L. ; Borsato, Andrea ; Chawchai, Sakonvan ; Columbu, Andrea ; Endres, Laura ; Hu, Jun ; Kern, Zoltan ; Kimbrough, Alena ; Koc, Koray ; Markowska, Monika ; Martrat, Belen ; Masood Ahmad, Syed ; Nehme, Carole ; Novello, Valdir Felipe ; Perez-Mejias, Carlos ; Ruan, Jiaoyang ; Sekhon, Natasha ; Sinha, Nitesh ; Tadros, Carol V. ; Tiger, Benjamin H. ; Warken, Sophie ; Wolf, Annabel ; Zhang, Haiwei ; SISAL Working Group members
    Palaeoclimate information on multiple climate variables at different spatiotemporal scales is becoming increasingly important to understand environmental and societal responses to climate change. A lack of high-quality reconstructions of past hydroclimate has recently been identified as a critical research gap. Speleothems, with their precise chronologies, widespread distribution, and ability to record changes in local to regional hydroclimate variability, are an ideal source of such information. Here, we present a new version of the Speleothem Isotopes Synthesis and AnaLysis database (SISALv3), which has been expanded to include trace element ratios and Sr isotopes as additional, hydroclimate-sensitive geochemical proxies. The oxygen and carbon isotope data included in previous versions of the database have been substantially expanded. SISALv3 contains speleothem data from 365 sites from across the globe, including 95 Mg/Ca, 85 Sr/Ca, 52 Ba/Ca, 25 U-Ca, 29 P-Ca, and 14 Sr-isotope records. The database also has increased spatiotemporal coverage for stable oxygen (892) and carbon (620) isotope records compared with SISALv2 (which consists of 673 and 430 stable oxygen and carbon records, respectively). Additional meta information has been added to improve the machine-readability and filtering of data. Standardized chronologies are included for all new entities along with the originally published chronologies. Thus, the SISALv3 database constitutes a unique resource of speleothem palaeoclimate information that allows regional to global palaeoclimate analyses based on multiple geochemical proxies, permitting more robust interpretations of past hydroclimate and comparisons with isotope-enabled climate models and other Earth system and hydrological models. The database can be accessed at https://doi.org/10.5287/ora-2nanwp4rk (Kaushal et al., 2024).
  • Article
    RotoBOD─quantifying oxygen consumption by suspended particles and organisms
    (American Chemical Society, 2024-05-08) Karthauser, Clarissa ; Fucile, Paul D. ; Maas, Amy E. ; Blanco-Bercial, Leocadio ; Gossner, Hannah ; Lowenstein, Daniel P. ; Niimi, Yuuki J. ; Van Mooy, Benjamin A. S. ; Bernhard, Joan M. ; Buesseler, Kenneth O. ; Sievert, Stefan M.
    Sinking or floating is the natural state of planktonic organisms and particles in the ocean. Simulating these conditions is critical when making measurements, such as respirometry, because they allow the natural exchange of substrates and products between sinking particles and water flowing around them and prevent organisms that are accustomed to motion from changing their metabolism. We developed a rotating incubator, the RotoBOD (named after its capability to rotate and determine biological oxygen demand, BOD), that uniquely enables automated oxygen measurements in small volumes while keeping the samples in their natural state of suspension. This allows highly sensitive rate measurements of oxygen utilization and subsequent characterization of single particles or small planktonic organisms, such as copepods, jellyfish, or protists. As this approach is nondestructive, it can be combined with several further measurements during and after the incubation, such as stable isotope additions and molecular analyses. This makes the instrument useful for ecologists, biogeochemists, and potentially other user groups such as aquaculture facilities. Here, we present the technical background of our newly developed apparatus and provide examples of how it can be utilized to determine oxygen production and consumption in small organisms and particles.
  • Article
    The influence of viscous slab rheology on numerical models of subduction
    (European Geosciences Union, 2024-05-07) Hummel, Natalie ; Buiter, Susanne ; Erdos, Zoltan
    Numerical models of subduction commonly use diffusion and dislocation creep laws from laboratory deformation experiments to determine the rheology of the lithosphere. The specific implementation of these laws varies from study to study, and the impacts of this variation on model behavior have not been thoroughly explored. We run simplified 2D numerical models of free subduction in SULEC, with viscoplastic slabs following (1) a diffusion creep law, (2) a dislocation creep law, and (3) both simultaneously, as well as several variations of model 3 with reduced resistance to bending. We compare the results of these models to a model with a constant-viscosity slab to determine the impact of the implementation of different lithospheric flow laws on subduction dynamics. In creep-governed models, higher subduction velocity causes a longer effective slab length, increasing slab pull and asthenospheric drag, which, in turn, affect subduction velocity. Numerical and analogue models implementing constant-viscosity slabs lack this feedback but still capture morphological patterns observed in more complex models. Dislocation creep is the primary deformation mechanism throughout the subducting lithosphere in our models. However, both diffusion creep and dislocation creep predict very high viscosities in the cold core of the slab. At the trench, the effective viscosity is lowered by plastic failure, rendering effective slab thickness the primary control on bending resistance and subduction velocity. However, at depth, plastic failure is not active, and the viscosity cap is reached in significant portions of the slab. The resulting high slab stiffness causes the subducting plate to curl under itself at the mantle transition zone, affecting patterns in subduction velocity, slab dip, and trench migration over time. Peierls creep and localized grain size reduction likely limit the stress and viscosity in the cores of real slabs. Numerical models implementing only power-law creep and neglecting Peierls creep are likely to overestimate the stiffness of subducting lithosphere, which may impact model results in a variety of respects.
  • Article
    A global SS precursor method for imaging discontinuities: The Moho and beyond
    (Royal Astronomical Society, 2024-04-18) Dai, Yuhang ; Tharimena, Saikiran ; Rychert, Catherine A. ; Harmon, Nicholas
    Imaging seismic velocity discontinuities within the Earth's interior offers important insight into our understanding of the tectonic plate, associated mantle dynamics, and the evolution of the planet. However, imaging velocity discontinuities in locations where station coverage is sparse, is sometimes challenging. Here we demonstrate the effectiveness of a new imaging approach using deconvolved SS precursor phases. We demonstrate its effectiveness by applying it to synthetic seismograms. We also apply it to ∼1.6 M SS precursor waveforms from the global seismic database (1990–2018) for comparison with CRUST1.0. We migrate to depth and stack the data in circular 6° bins. The synthetic tests demonstrate that we can recover Moho depths as shallow as 20 km. Globally, the Moho is resolved at 21–67 km depth beneath continental regions. The Moho increases in depth from 21 km ± 4 km beneath the continental shelf to 45–50 km beneath the continental interiors and is as deep as 67 ± 4 km beneath Tibet. We resolve the Moho in 77 percent of all continental bins, within 10 km of CRUST1.0, with all outliers located in coastal regions. We also demonstrate the feasibility of using this method to image discontinuities associated with the mantle transition zone with both synthetic and real data. Overall, the approach shows broad promise for imaging mantle discontinuities.
  • Article
    Ambient noise interferometry using ocean bottom seismometer data from active source experiments conducted in the southernmost Mariana Trench
    (American Geophysical Union, 2024-03-13) Zhang, Yayun ; Xu, Min ; Xiao, Zhuo ; Zhou, Yong ; Yu, Chuanhai ; Lin, Jian ; Yang, Hongfeng ; Qiu, Xuelin
    Ocean bottom seismometers (OBSs) have been used to detect submarine structural and tectonic information for decades. According to signal source controllability, OBS data have generally been classified into active and passive source data categories. The former mainly focuses on the compressional wave (P-wave) velocity inversion and always lacks valid information about the shear wave (S-wave) velocity structure. While the latter provides structural information with limited resolution due to the aperture of the stations. Overcoming the barriers between processing these two data types will allow the reuse of a vast amount of data from active source experiments to explore the submarine S-wave velocity structural properties. Here, we creatively applied ambient noise interferometry to invert the S-wave velocity structure using data from active source OBS deployment conducted in the southernmost Mariana subduction zone, which had already been utilized to detect submarine P-wave velocity structure. Considering the short time duration and relatively low quality of this type of data, a combined method of short-segment cross-correlation and selected time-frequency domain phase-weighted stacking was adopted to obtain stable cross-correlation functions, which were subsequently used to invert S-wave velocity structures. Compared to previous studies using different methods, our result sheds new light on the crust and upper mantle structure of the southernmost Mariana subduction zone. This method could be used to detect more information based on the reutilization of existing active source OBS data.
  • Article
    Coastal shoreline change assessments at global scales
    (Nature Research, 2024-03-15) Warrick, Jonathan A. ; Buscombe, Daniel ; Vos, Kilian ; Bryan, Karin R. ; Castelle, Bruno ; Cooper, J. Andrew G. ; Harley, Mitch D. ; Jackson, Derek W. T. ; Ludka, Bonnie C. ; Masselink, Gerd ; Palmsten, Margaret L. ; de Alegria-Arzaburu, Amaia Ruiz ; Senechal, Nadia ; Sherwood, Christopher R. ; Short, Andrew D. ; Sogut, Erdinc ; Splinter, Kristen D. ; Stephenson, Wayne J. ; Syvitski, Jaia ; Young, Adam P.
    During the present era of rapid climate change and sea-level rise, coastal change science is needed at global, regional, and local scales. Essential elements of this science, regardless of scale, include that the methods are defendable and that the results are independently verifiable. The recent contribution by Almar et al.1 does not achieve either of these measures as shown by: (i) the use of an error-prone proxy for coastal shoreline and (ii) analyses that are circular and explain little of the data variance.
  • Article
    Ross ice shelf displacement and elastic plate waves induced by Whillans ice stream slip events
    (American Geophysical Union, 2024-03-27) Wiens, Douglas A. ; Aster, Richard C. ; Nyblade, Andrew A. ; Bromirski, Peter D. ; Gerstoft, Peter ; Stephen, Ralph A.
    Ice shelves are assumed to flow steadily from their grounding lines to the ice front. We report the detection of ice-propagating extensional Lamb (plate) waves accompanied by pulses of permanent ice shelf displacement observed by co-located Global Navigation Satellite System receivers and seismographs on the Ross Ice Shelf. The extensional waves and associated ice shelf displacement are produced by tidally triggered basal slip events of the Whillans Ice Stream, which flows into the ice shelf. The propagation velocity of 2,800 m/s is intermediate between shear and compressional ice velocities, with velocity and particle motions consistent with predictions for extensional Lamb waves. During the passage of the Lamb waves the entire ice shelf is displaced about 60 mm with a velocity more than an order of magnitude above its long-term flow rate. Observed displacements indicate a peak dynamic strain of 10−7, comparable to that of earthquake surface waves that trigger ice quakes.
  • Article
    Ocean bottom distributed acoustic sensing for oceanic seismicity detection and seismic ocean thermometry
    (American Geophysical Union, 2024-03-07) Shen, Zhichao ; Wu, Wenbo
    A T-wave is a seismo-acoustic wave that can travel a long distance in the ocean with little attenuation, making it valuable for monitoring remote tectonic activity and changes in ocean temperature using seismic ocean thermometry (SOT). However, current high-quality T-wave stations are sparsely distributed, limiting the detectability of oceanic seismicity and the spatial resolution of global SOT. The use of ocean bottom distributed acoustic sensing (OBDAS), through the conversion of telecommunication cables into dense seismic arrays, is a cost-effective and scalable means to complement existing seismic stations. Here, we systematically investigate the performance of OBDAS for oceanic seismicity detection and SOT using a 4-day Ocean Observatories Initiative community experiment offshore Oregon. We first present T-wave observations from distant and regional earthquakes and develop a curvelet denoising scheme to enhance T-wave signals on OBDAS. After denoising, we show that OBDAS can detect and locate more and smaller T-wave events than regional OBS network. During the 4-day experiment, we detect 92 oceanic earthquakes, most of which are missing from existing catalogs. Leveraging the sensor density and cable directionality, we demonstrate the feasibility of source azimuth estimation for regional Blanco earthquakes. We also evaluate the SOT performance of OBDAS using pseudo-repeating earthquake T-waves. Our results show that OBDAS can utilize repeating earthquakes as small as M3.5 for SOT, outperforming ocean bottom seismometers. However, ocean ambient natural and instrumental noise strongly affects the performance of OBDAS for oceanic seismicity detection and SOT, requiring further investigation.
  • Article
    Pacific seafloor in the 40-52 Myr old portion of the Molokai to Murray corridor
    (Elsevier, 2024-02-18) Blackman, Donna K. ; Talavera-Soza, Sujania ; Hung, Ruei-Jiun ; Collins, John A. ; Laske, Gabi
    A detailed study of the character of 40–52 Myr old Northeast Pacific seafloor illustrates how volcanism that occurs outside a spreading center axial zone contributes to the morphology of a region. A compilation of new and pre-existing multibeam sonar data forms the basis of our study, which lies within the spreading corridor bounded by Molokai and Murray fracture zones and does not include a major volcanic chain. The broad structure is consistent with constant crustal thickness and lithospheric cooling with age, and our analyses focus on the deviations from this ‘reference’ model. We find three types of volcanic features where typical abyssal hill fabric is generally not observed: 1) volcanic ridges that have a length of 30–120 km and a height of 1–2 km; 2) moderate seamounts that have a diameter of 8–15 km and a height of several 100's m; and 3) fields of very small seamounts, which extend several 10's km and are more common at ∼25% coverage than in other Pacific regions away from major volcanic chains. Gravity analysis suggests that the volcanic ridges and a few of the moderate seamounts are associated with local crustal thickening whereas the fields of very small seamounts do not display a distinct mass anomaly. Quantifying the distribution of past volcanism in this section of the Pacific plate during its evolution after initial accretion helps illustrate the degree of off-axis magmatism. Although we interpret the volcanic ridges as presently inactive, their formation on lithosphere older than at least a few Myr likely had an impact on the local seismic structure.
  • Article
    Seismic ocean thermometry of the Kuroshio Extension region
    (American Geophysical Union, 2024-02-24) Peng, Shirui ; Callies, Jorn ; Wu, Wenbo ; Zhan, Zhongwen
    Seismic ocean thermometry uses sound waves generated by repeating earthquakes to measure temperature change in the deep ocean. In this study, waves generated by earthquakes along the Japan Trench and received at Wake Island are used to constrain temperature variations in the Kuroshio Extension region. This region is characterized by energetic mesoscale eddies and large decadal variability, posing a challenging sampling problem for conventional ocean observations. The seismic measurements are obtained from a hydrophone station off and a seismic station on Wake Island, with the seismic station's digital record reaching back to 1997. These measurements are combined in an inversion for the time and azimuth dependence of the range-averaged deep temperatures, revealing lateral and temporal variations due to Kuroshio Extension meanders, mesoscale eddies, and decadal water mass displacements. These results highlight the potential of seismic ocean thermometry for better constraining the variability and trends in deep-ocean temperatures. By overcoming the aliasing problem of point measurements, these measurements complement existing ship- and float-based hydrographic measurements.
  • Article
    Planktonic marine fungi: A review
    (American Geophysical Union, 2024-03-03) Peng, Xuefeng ; Amend, Anthony S. ; Baltar, Federico ; Blanco-Bercial, Leocadio ; Breyer, Eva ; Burgaud, Gaetan ; Cunliffe, Michael ; Edgcomb, Virginia P. ; Grossart, Hans-Peter ; Mara, Paraskevi ; Masigol, Hossein ; Pang, Ka-Lai ; Retter, Alice ; Roberts, Cordelia ; van Bleijswijk, Judith ; Walker, Allison K. ; Whitner, Syrena
    Fungi in marine ecosystems play crucial roles as saprotrophs, parasites, and pathogens. The definition of marine fungi has evolved over the past century. Currently, “marine fungi” are defined as any fungi recovered repeatedly from marine habitats that are able to grow and/or sporulate in marine environments, form symbiotic relationships with other marine organisms, adapt and evolve at the genetic level, or are active metabolically in marine environments. While there are a number of recent reviews synthesizing our knowledge derived from over a century of research on marine fungi, this review article focuses on the state of knowledge on planktonic marine fungi from the coastal and open ocean, defined as fungi that are in suspension or attached to particles, substrates or in association with hosts in the pelagic zone of the ocean, and their roles in remineralization of organic matter and major biogeochemical cycles. This review differs from previous ones by focusing on biogeochemical impacts of planktonic marine fungi and methodological considerations for investigating their diversity and ecological functions. Importantly, we point out gaps in our knowledge and the potential methodological biases that might have contributed to these gaps. Finally, we highlight recommendations that will facilitate future studies of marine fungi. This article first provides a brief overview of the diversity of planktonic marine fungi, followed by a discussion of the biogeochemical impacts of planktonic marine fungi, and a wide range of methods that can be used to study marine fungi.