Seasonal forcing of summer dissolved inorganic carbon and chlorophyll a on the western shelf of the Antarctic Peninsula
Seasonal forcing of summer dissolved inorganic carbon and chlorophyll a on the western shelf of the Antarctic Peninsula
Date
2010-03-30
Authors
Montes-Hugo, Martin
Sweeney, Colm
Doney, Scott C.
Ducklow, Hugh W.
Frouin, Robert
Martinson, Douglas G.
Stammerjohn, Sharon E.
Schofield, Oscar M. E.
Sweeney, Colm
Doney, Scott C.
Ducklow, Hugh W.
Frouin, Robert
Martinson, Douglas G.
Stammerjohn, Sharon E.
Schofield, Oscar M. E.
Linked Authors
Person
Person
Person
Person
Person
Alternative Title
Citable URI
As Published
Date Created
Location
DOI
10.1029/2009JC005267
Related Materials
Replaces
Replaced By
Keywords
Climate variability
Antarctica
Carbonate system
Antarctica
Carbonate system
Abstract
The Southern Ocean is a climatically sensitive region that plays an important role in the regional and global modulation of atmospheric CO2. Based on satellite-derived sea ice data, wind and cloudiness estimates from numerical models (National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis), and in situ measurements of surface (0–20 m depth) chlorophyll a (ChlSurf) and dissolved inorganic carbon (DICSurf) concentration, we show sea ice concentration from June to November and spring wind patterns between 1979 and 2006 had a significant influence on midsummer (January) primary productivity and carbonate chemistry for the Western Shelf of the Antarctic Peninsula (WAP, 64°–68°S, 63.4°–73.3°W). In general, strong (>3.5 m s−1) and persistent (>2 months) northerly winds during the previous spring were associated with relatively high (monthly mean > 2 mg m−3) ChlSurf and low (monthly mean < 2 mmol kg−1) salinity-corrected DIC (DICSurf*) during midsummer. The greater ChlSurf accumulation and DICSurf* depletion was attributed to an earlier growing season characterized by decreased spring sea ice cover or nearshore accumulation of phytoplankton in association with sea ice. The impact of these wind-driven mechanisms on ChlSurf and DICSurf* depended on the extent of sea ice area (SIA) during winter. Winter SIA affected phytoplankton blooms by changing the upper mixed layer depth (UMLD) during the subsequent spring and summer (December–January–February). Midsummer DICSurf* was not related to DICSurf* concentration during the previous summer, suggesting an annual replenishment of surface DIC during fall/winter and a relatively stable pool of deep (>200 m depth) “winter-like” DIC on the WAP.
Description
Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 115 (2010): C03024, doi:10.1029/2009JC005267.
Embargo Date
Citation
Journal of Geophysical Research 115 (2010): C03024