Ducklow
Hugh W.
Ducklow
Hugh W.
No Thumbnail Available
50 results
Search Results
Now showing
1 - 20 of 50
-
ArticleWest Antarctic Peninsula : an ice-dependent coastal marine ecosystem in transition(The Oceanography Society, 2013-09) Ducklow, Hugh W. ; Fraser, William R. ; Meredith, Michael P. ; Stammerjohn, Sharon E. ; Doney, Scott C. ; Martinson, Douglas G. ; Sailley, Sevrine F. ; Schofield, Oscar M. E. ; Steinberg, Deborah K. ; Venables, Hugh J. ; Amsler, Charles D.The extent, duration, and seasonality of sea ice and glacial discharge strongly influence Antarctic marine ecosystems. Most organisms' life cycles in this region are attuned to ice seasonality. The annual retreat and melting of sea ice in the austral spring stratifies the upper ocean, triggering large phytoplankton blooms. The magnitude of the blooms is proportional to the winter extent of ice cover, which can act as a barrier to wind mixing. Antarctic krill, one of the most abundant metazoan populations on Earth, consume phytoplankton blooms dominated by large diatoms. Krill, in turn, support a large biomass of predators, including penguins, seals, and whales. Human activity has altered even these remote ecosystems. The western Antarctic Peninsula region has warmed by 7°C over the past 50 years, and sea ice duration has declined by almost 100 days since 1978, causing a decrease in phytoplankton productivity in the northern peninsula region. Besides climate change, Antarctic marine systems have been greatly altered by harvesting of the great whales and now krill. It is unclear to what extent the ecosystems we observe today differ from the pristine state.
-
ArticleLong-term ecological research in a human-dominated world(American Institute of Biological Sciences, 2012-04) Robertson, G. Philip ; Collins, Scott L. ; Foster, David R. ; Brokaw, Nicholas ; Ducklow, Hugh W. ; Gragson, Ted L. ; Gries, Corinna ; Hamilton, Stephen K. ; McGuire, A. David ; Moore, John C. ; Stanley, Emily H. ; Waide, Robert B. ; Williams, Mark W.The US Long Term Ecological Research (LTER) Network enters its fourth decade with a distinguished record of achievement in ecological science. The value of long-term observations and experiments has never been more important for testing ecological theory and for addressing today's most difficult environmental challenges. The network's potential for tackling emergent continent-scale questions such as cryosphere loss and landscape change is becoming increasingly apparent on the basis of a capacity to combine long-term observations and experimental results with new observatory-based measurements, to study socioecological systems, to advance the use of environmental cyberinfrastructure, to promote environmental science literacy, and to engage with decisionmakers in framing major directions for research. The long-term context of network science, from understanding the past to forecasting the future, provides a valuable perspective for helping to solve many of the crucial environmental problems facing society today.
-
PreprintParticle export from the upper ocean over the continental shelf of the west Antarctic Peninsula: A long-term record, 1992–2007( 2008-03) Ducklow, Hugh W. ; Erickson, Matthew ; Kelly, Joann ; Montes-Hugo, Martin ; Ribic, Christine A. ; Smith, Raymond C. ; Stammerjohn, Sharon E. ; Karl, David M.We report on results of a long-term (1993-2007) time series sediment trap moored at 170 m to the west of the Antarctic Peninsula in the mid-continental shelf region (350 m depth; 64º30’ S, 66º00’ W). This is a region characterized by late spring-summer diatom blooms, moderately high seasonal primary productivity (50-150 mmol C m-2 d-1 in December-February) and high phytoplankton and krill biomass in the seasonal sea ice zone. The mass flux ranged from near 0 to over 1 g m-2 d-1 and was near 0 to >30% organic carbon (mean 8%). Sedimentation from the upper ocean as estimated by the trap collections at 170 m exhibited strong seasonality with high fluxes (1-10 mmol C m-2 d-1) in November-March following ice retreat and very low fluxes (<0.001 mmol C m-2 d-1) during the Austral winter and under sea ice cover. An average of 85% of the annual export of 212 mmol C m-2 occurred during the seasonal peak flux episodes. Over the trap record, the annual peak flux episode has tended to occur later in the Austral summer, advancing by about 40 days since 1993. The time-integrated sedimentation during the peak flux episode was <1 – 50% of the SeaWiFS-estimated primary production (mean 4%) at the trap site over the period 1998-2006. The elemental composition of material captured in the traps had an average C:N:P of 212:28:1, greater than the canonical Redfield values. High C:P ratios (400- 600) corresponded with the annual flux peak, indicating preferential loss of P from the sinking particles in the summer, ice-free period. The composition of the exported material more closely approximated the Redfield composition during the low-flux, winter period.
-
ArticleHigh particle export over the continental shelf of the west Antarctic Peninsula(American Geophysical Union, 2010-11-24) Buesseler, Ken O. ; McDonnell, Andrew M. P. ; Schofield, Oscar M. E. ; Steinberg, Deborah K. ; Ducklow, Hugh W.Drifting cylindrical traps and the flux proxy 234Th indicate more than an order of magnitude higher sinking fluxes of particulate carbon and 234Th in January 2009 than measured by a time-series conical trap used regularly on the shelf of the west Antarctic Peninsula (WAP). The higher fluxes measured in this study have several implications for our understanding of the WAP ecosystem. Larger sinking fluxes result in a revised export efficiency of at least 10% (C flux/net primary production) and a requisite lower regeneration efficiency in surface waters. High fluxes also result in a large supply of sinking organic matter to support subsurface and benthic food webs on the continental shelf. These new findings call into question the magnitude of seasonal and interannual variability in particle flux and reaffirm the difficulty of using moored conical traps as a quantitative flux collector in shallow waters.
-
ArticleSingle-cell physiological structure and growth rates of heterotrophic bacteria in a temperate estuary (Waquoit Bay, Massachusetts)(Association for the Sciences of Limnology and Oceanography, 2011-01) Moran, Xose Anxelu G. ; Ducklow, Hugh W. ; Erickson, MatthewFlow cytometric determinations of membrane integrity, nucleic acid content, and respiratory activity were combined with dilution cultures in Waquoit Bay Estuary (Massachusetts) to estimate specific growth rates of total, live, high (HNA), and low (LNA) nucleic acid content and actively respiring (CTC+) cells. Bacterial abundance ranged from 106 to 107 cells mL-1, with live cells generally contributing > 85% to total numbers, 42-82% HNA cells, and 3-36% CTC+ cells. Specific growth rates (µ) from all physiological groups were positively correlated, but they showed different temperature dependences, with activation energies ranging from 0.28 (live) to 0.97 eV (LNA). The µ values of live cells (0.14-2.40 d-1) were similar to those of total bacteria (0.06-1.53 d-1). LNA bacteria were not dormant but showed positive growth in most experiments, although HNA cells greatly outgrew LNA cells (µ ranges of 0.28-2.26 d-1 vs. 0-0.69 d-1), and CTC+ cells showed the highest values (0.12-2.65 d-1). Positive correlations of HNA bacteria µ with total and phytoplankton-derived dissolved organic carbon support the previously hypothesized strong bottom-up control of HNA cells. Bacterial production estimated from leucine incorporation and empirical conversion factors agreed well with estimates based on growth rates. HNA cells were always responsible for the largest share of bacterial production in the estuary. The contribution of CTC+ cells significantly increased with temperature in the 7-27°C range, reaching values of 40% at temperatures higher than 20°C.
-
ArticleInterannual variability of primary production and dissolved organic nitrogen storage in the North Pacific Subtropical Gyre(American Geophysical Union, 2012-08-10) Luo, Ya-Wei ; Ducklow, Hugh W. ; Friedrichs, Marjorie A. M. ; Church, Matthew J. ; Karl, David M. ; Doney, Scott C.The upper ocean primary production measurements from the Hawaii Ocean Time series (HOT) at Station ALOHA in the North Pacific Subtropical Gyre showed substantial variability over the last two decades. The annual average primary production varied within a limited range over 1991–1998, significantly increased in 1999–2000 and then gradually decreased afterwards. This variability was investigated using a one-dimensional ecosystem model. The long-term HOT observations were used to constrain the model by prescribing physical forcings and lower boundary conditions and optimizing the model parameters against data using data assimilation. The model reproduced the general interannual pattern in the observed primary production, and mesoscale variability in vertical velocity was identified as a major contributing factor to the interannual variability in the simulation. Several strong upwelling events occurred in 1999, which brought up nitrate at rates several times higher than other years and elevated the model primary production. Our model results suggested a hypothesis for the observed interannual variability pattern of primary production at Station ALOHA: Part of the upwelled nitrate input in 1999 was converted to and accumulated as semilabile dissolved organic nitrogen (DON), and subsequent recycling of this semilabile DON supported enhanced primary productivity for the next several years as the semilabile DON perturbation was gradually removed via export.
-
PreprintMultiscale control of bacterial production by phytoplankton dynamics and sea ice along the western Antarctic Peninsula : a regional and decadal investigation( 2012-03-07) Ducklow, Hugh W. ; Schofield, Oscar M. E. ; Vernet, Maria ; Stammerjohn, Sharon E. ; Erickson, MatthewWe present results on phytoplankton and bacterial production and related hydrographic properties collected on nine annual summer cruises along the western Antarctic Peninsula. This region is strongly influenced by interannual variations in the duration and extent of sea ice cover, necessitating a decade-scale study. Our study area transitions from a nearshore region influenced by summer runoff from glaciers to an offshore, slope region dominated by the Antarctic Circumpolar Current. The summer bacterial assemblage is the product of seasonal warming and freshening following spring sea ice retreat and the plankton succession occurring in that evolving water mass. Bacterial production rates averaged 20 mgC m-2 d-1 and were a low (5%) fraction of the primary production (PP). There was significant variation in BP between regions and years, reflecting the variability in sea ice, Chlorophyll and PP. Leucine incorporation was significantly correlated (r2 ranging 0.2-0.7, p<0.001) with both chlorophyll and PP across depths, regions and years indicating strong phytoplankton-bacteria coupling. Relationships with temperature were variable, including positive, negative and insignificant relationships (r2 <0.2 for regressions with p<0.05). Bacterial production is regulated indirectly by variations in sea ice cover within regions and over years, setting the levels of phytoplankton biomass accumulation and PP rates; these in turn fuel BP, to which PP is coupled via direct release from phytoplankton or other less direct pathways.
-
ArticleWAP-1D-VAR v1.0: development and evaluation of a one-dimensional variational data assimilation model for the marine ecosystem along the West Antarctic Peninsula(European Geosciences Union, 2021-08-12) Kim, Hyewon Heather ; Luo, Ya-Wei ; Ducklow, Hugh W. ; Schofield, Oscar M. E. ; Steinberg, Deborah K. ; Doney, Scott C.The West Antarctic Peninsula (WAP) is a rapidly warming region, with substantial ecological and biogeochemical responses to the observed change and variability for the past decades, revealed by multi-decadal observations from the Palmer Antarctica Long-Term Ecological Research (LTER) program. The wealth of these long-term observations provides an important resource for ecosystem modeling, but there has been a lack of focus on the development of numerical models that simulate time-evolving plankton dynamics over the austral growth season along the coastal WAP. Here, we introduce a one-dimensional variational data assimilation planktonic ecosystem model (i.e., the WAP-1D-VAR v1.0 model) equipped with a model parameter optimization scheme. We first demonstrate the modified and newly added model schemes to the pre-existing food web and biogeochemical components of the other ecosystem models that WAP-1D-VAR model was adapted from, including diagnostic sea-ice forcing and trophic interactions specific to the WAP region. We then present the results from model experiments where we assimilate 11 different data types from an example Palmer LTER growth season (October 2002–March 2003) directly related to corresponding model state variables and flows between these variables. The iterative data assimilation procedure reduces the misfits between observations and model results by 58 %, compared to before optimization, via an optimized set of 12 parameters out of a total of 72 free parameters. The optimized model results capture key WAP ecological features, such as blooms during seasonal sea-ice retreat, the lack of macronutrient limitation, and modeled variables and flows comparable to other studies in the WAP region, as well as several important ecosystem metrics. One exception is that the model slightly underestimates particle export flux, for which we discuss potential underlying reasons. The data assimilation scheme of the WAP-1D-VAR model enables the available observational data to constrain previously poorly understood processes, including the partitioning of primary production by different phytoplankton groups, the optimal chlorophyll-to-carbon ratio of the WAP phytoplankton community, and the partitioning of dissolved organic carbon pools with different lability. The WAP-1D-VAR model can be successfully employed to link the snapshots collected by the available data sets together to explain and understand the observed dynamics along the coastal WAP.
-
ArticlePenguin biogeography along the West Antarctic Peninsula : testing the canyon hypothesis with Palmer LTER observations(The Oceanography Society, 2013-09) Schofield, Oscar M. E. ; Ducklow, Hugh W. ; Bernard, Kim S. ; Doney, Scott C. ; Patterson-Fraser, Donna ; Gorman, Kristen ; Martinson, Douglas G. ; Meredith, Michael P. ; Saba, Grace ; Stammerjohn, Sharon E. ; Steinberg, Deborah K. ; Fraser, William R.The West Antarctic Peninsula (WAP) is home to large breeding colonies of the ice-dependent Antarctic Adélie penguin (Pygoscelis adeliae). Although the entire inner continental shelf is highly productive, with abundant phytoplankton and krill populations, penguin colonies are distributed heterogeneously along the WAP. This ecological conundrum targets a long-standing question of interest: what environmental factors structure the locations of Adélie penguin "hot spots" throughout the WAP?
-
ArticleThe freshwater system west of the Antarctic Peninsula : spatial and temporal changes(American Meteorological Society, 2013-03-01) Meredith, Michael P. ; Venables, Hugh J. ; Clarke, Andrew ; Ducklow, Hugh W. ; Erickson, Matthew ; Leng, Melanie J. ; Lenaerts, Jan T. M. ; van den Broeke, Michiel R.Climate change west of the Antarctic Peninsula is the most rapid of anywhere in the Southern Hemisphere, with associated changes in the rates and distributions of freshwater inputs to the ocean. Here, results from the first comprehensive survey of oxygen isotopes in seawater in this region are used to quantify spatial patterns of meteoric water (glacial discharge and precipitation) separately from sea ice melt. High levels of meteoric water are found close to the coast, due to orographic effects on precipitation and strong glacial discharge. Concentrations decrease offshore, driving significant southward geostrophic flows (up to ~30 cm s−1). These produce high meteoric water concentrations at the southern end of the sampling grid, where collapse of the Wilkins Ice Shelf may also have contributed. Sea ice melt concentrations are lower than meteoric water and patchier because of the mobile nature of the sea ice itself. Nonetheless, net sea ice production in the northern part of the sampling grid is inferred; combined with net sea ice melt in the south, this indicates an overall southward ice motion. The survey is contextualized temporally using a decade-long series of isotope data from a coastal Antarctic Peninsula site. This shows a temporal decline in meteoric water in the upper ocean, contrary to expectations based on increasing precipitation and accelerating deglaciation. This is driven by the increasing occurrence of deeper winter mixed layers and has potential implications for concentrations of trace metals supplied to the euphotic zone by glacial discharge. As the regional freshwater system evolves, the continuing isotope monitoring described here will elucidate the ongoing impacts on climate and the ecosystem.
-
PreprintThe molecular products and biogeochemical significance of lipid photooxidation in West Antarctic surface waters( 2018-04) Collins, James R. ; Fredricks, Helen F. ; Bowman, Jeff S. ; Ward, Collin P. ; Moreno, Carly ; Longnecker, Krista ; Marchetti, Adrian ; Hansel, Colleen M. ; Ducklow, Hugh W. ; Van Mooy, Benjamin A. S.The seasonal depletion of stratospheric ozone over the Southern Hemisphere allows abnormally high doses of ultraviolet radiation (UVR) to reach surface waters of the West Antarctic Peninsula (WAP) in the austral spring, creating a natural laboratory for the study of lipid photooxidation in the shallow mixed layer of the marginal ice zone. The photooxidation of lipids under such conditions has been identified as a significant source of stress to microorganisms, and short-chain fatty acids altered by photochemical processes have been found in both marine aerosols and sinking marine particle material. However, the biogeochemical impact of lipid photooxidation has not been quantitatively compared at ecosystem scale to the many other biological and abiotic processes that can transform particulate organic matter in the surface ocean. We combined results from field experiments with diverse environmental data, including high-resolution, accurate-mass HPLC-ESI-MS analysis of lipid extracts and in situ measurements of ultraviolet irradiance, to address several unresolved questions about lipid photooxidation in the marine environment. In our experiments, we used liposomes — nonliving, cell-like aggregations of lipids — to examine the photolability of various moieties of the intact polar diacylglycerol (IP-DAG) phosphatidylcholine (PC), a structural component of membranes in a broad range of microorganisms. We observed significant rates of photooxidation only when the molecule contained the polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA). As the DHA-containing lipid was oxidized, we observed the steady ingrowth of a diversity of oxylipins and oxidized IP-DAG; our results suggest both the intact IPDAG the degradation products were amenable to heterotrophic assimilation. To complement our experiments, we used an enhanced version of a new lipidomics discovery software package to identify the lipids in water column samples and in several diatom isolates. The galactolipid digalactosyldiacylglycerol (DGDG), the sulfolipid sulfoquinovosyldiacylglycerol (SQDG) and the phospholipids PC and phosphatidylglycerol (PG) accounted for the majority of IP-DAG in the water column particulate (≥ 0.2 μm) size fraction; between 3.4 and 5.3 % of the IP-DAG contained fatty acids that were both highly polyunsaturated (i.e., each containing ≥ 5 double bonds). Using a broadband apparent quantum yield (AQY) that accounted for direct and Type I (i.e., radical-mediated) photooxidation of PUFA-containing IP-DAG, we estimated that 0.7 ± 0.2 μmol IP-DAG m-2 d-1 (0.5 ± 0.1 mg C m-2 d-1) were oxidized by photochemical processes in the mixed layer. This rate represented 4.4 % (range, 3-21 %) of the mean bacterial production rate measured in the same waters immediately following the retreat of the sea ice. Because our liposome experiments were not designed to account for oxidation by Type II photosensitized processes that often dominate in marine phytodetritus, our rate estimates may represent a sizeable underestimate of the true rate of lipid photooxidation in the water column. While production of such diverse oxidized lipids and oxylipins has been previously observed in terrestrial plants and mammals in response to biological stressors such as disease, we show here that a similar suite of molecules can be produced via an abiotic process in the environment and that the effect can be commensurate in magnitude with other ecosystem-scale biogeochemical processes.
-
PreprintLong-term studies of the marine ecosystem along the west Antarctic Peninsula( 2008-06-27) Ducklow, Hugh W.Articles in this volume focus on longer-term studies of the marine ecosystem of the continental shelf west of the Antarctic Peninsula, principally by the Palmer, Antarctica Long- Term Ecological Research project (Ross et al., 1996; Ducklow et al., 2007). There is a rich history of oceanographic and ecological research in the Bellingshausen Sea region and on the continental shelf dating back to the 19th and early 20th centuries (El-Sayed, 1996). The modern era of scientific research started with the British Discovery Investigations of 1925-37 (Hardy, 1967), and included classic studies of phytoplankton (Hart, 1934) and krill (Marr, 1962). Hart’s report presciently suggested primary producers could be limited by iron availability. El-Sayed (1996) dissects the subsequent history of oceanographic research up to the advent of the Southern Ocean GLOBEC (Hofmann et al., 2001; Hofmann et al., 2004) and JGOFS (Anderson and Smith Jr., 2001) programs. The period from the 1970’s to the mid-90’s was dominated by expeditionary and process-level studies of particular regions and processes extending over a few seasons to a few years at most. The Research on Antarctic Coastal Ecosystem Rates (RACER) Program (Huntley et al., 1991; Karl, 1991) is the outstanding example of this mode of research, having focused on determination of key rate processes as a new approach to understanding ecosystem dynamics (Karl et al., 1991a; Karl et al., 1991b). RACER was a direct predecessor and major influence on Palmer LTER, GLOBEC and JGOFS. What was lacking in Antarctic waters, as in most other regions and ocean provinces were sustained, long-term observations of a variety of ocean properties and rates, conducted in the context of hypothesis-driven, experimental science (Ducklow et al., 2008a). The creation of the US LTER Network in 1980 (Magnuson, 1990) made this possible.
-
ArticleTowards a better understanding of microbial carbon flux in the sea(Inter-Research, 2008-09-18) Gasol, Josep M. ; Pinhassi, Jarone ; Alonso-Saez, Laura ; Ducklow, Hugh W. ; Herndl, Gerhard J. ; Koblizek, Michal ; Labrenz, Matthias ; Luo, Ya-Wei ; Moran, Xose Anxelu G. ; Reinthaler, Thomas ; Simon, MeinhardWe now have a relatively good idea of how bulk microbial processes shape the cycling of organic matter and nutrients in the sea. The advent of the molecular biology era in microbial ecology has resulted in advanced knowledge about the diversity of marine microorganisms, suggesting that we might have reached a high level of understanding of carbon fluxes in the oceans. However, it is becoming increasingly clear that there are large gaps in the understanding of the role of bacteria in regulating carbon fluxes. These gaps may result from methodological as well as conceptual limitations. For example, should bacterial production be measured in the light? Can bacterial production conversion factors be predicted, and how are they affected by loss of tracers through respiration? Is it true that respiration is relatively constant compared to production? How can accurate measures of bacterial growth efficiency be obtained? In this paper, we discuss whether such questions could (or should) be addressed. Ongoing genome analyses are rapidly widening our understanding of possible metabolic pathways and cellular adaptations used by marine bacteria in their quest for resources and struggle for survival (e.g. utilization of light, acquisition of nutrients, predator avoidance, etc.). Further, analyses of the identity of bacteria using molecular markers (e.g. subgroups of Bacteria and Archaea) combined with activity tracers might bring knowledge to a higher level. Since bacterial growth (and thereby consumption of DOC and inorganic nutrients) is likely regulated differently in different bacteria, it will be critical to learn about the life strategies of the key bacterial species to achieve a comprehensive understanding of bacterial regulation of C fluxes. Finally, some processes known to occur in the microbial food web are hardly ever characterized and are not represented in current food web models. We discuss these issues and offer specific comments and advice for future research agendas.
-
ArticleModeling polar marine ecosystem functions guided by bacterial physiological and taxonomic traits(European Geosciences Union, 2022-01-06) Kim, Hyewon Heather ; Bowman, Jeff S. ; Luo, Ya-Wei ; Ducklow, Hugh W. ; Schofield, Oscar M. E. ; Steinberg, Deborah K. ; Doney, Scott C.Heterotrophic marine bacteria utilize organic carbon for growth and biomass synthesis. Thus, their physiological variability is key to the balance between the production and consumption of organic matter and ultimately particle export in the ocean. Here we investigate a potential link between bacterial traits and ecosystem functions in the rapidly warming West Antarctic Peninsula (WAP) region based on a bacteria-oriented ecosystem model. Using a data assimilation scheme, we utilize the observations of bacterial groups with different physiological traits to constrain the group-specific bacterial ecosystem functions in the model. We then examine the association of the modeled bacterial and other key ecosystem functions with eight recurrent modes representative of different bacterial taxonomic traits. Both taxonomic and physiological traits reflect the variability in bacterial carbon demand, net primary production, and particle sinking flux. Numerical experiments under perturbed climate conditions demonstrate a potential shift from low nucleic acid bacteria to high nucleic acid bacteria-dominated communities in the coastal WAP. Our study suggests that bacterial diversity via different taxonomic and physiological traits can guide the modeling of the polar marine ecosystem functions under climate change.
-
ArticleThe disappearing cryosphere : impacts and ecosystem responses to rapid cryosphere loss(American Institute of Biological Sciences, 2012-04) Fountain, Andrew G. ; Campbell, John L. ; Schuur, Edward A. G. ; Stammerjohn, Sharon E. ; Williams, Mark W. ; Ducklow, Hugh W.The cryosphere—the portion of the Earth's surface where water is in solid form for at least one month of the year—has been shrinking in response to climate warming. The extents of sea ice, snow, and glaciers, for example, have been decreasing. In response, the ecosystems within the cryosphere and those that depend on the cryosphere have been changing. We identify two principal aspects of ecosystem-level responses to cryosphere loss: (1) trophodynamic alterations resulting from the loss of habitat and species loss or replacement and (2) changes in the rates and mechanisms of biogeochemical storage and cycling of carbon and nutrients, caused by changes in physical forcings or ecological community functioning. These changes affect biota in positive or negative ways, depending on how they interact with the cryosphere. The important outcome, however, is the change and the response the human social system (infrastructure, food, water, recreation) will have to that change.
-
PreprintWhat is the metabolic state of the oligotrophic ocean? A debate( 2012-07) Ducklow, Hugh W. ; Doney, Scott C.For more than a decade there has been controversy in oceanography regarding the metabolic state of the oligotrophic gyres of the open sea. Here we review background on this controversy, commenting on several issues to set the context for a moderated debate between two groups of scientists. In a companion paper, Williams et al (2013) take the view that the oligotrophic subtropical gyres of the global ocean exhibit a state of net autotrophy, that is, the gross primary production (GPP) exceeds community respiration (R), when averaged over some suitably extensive region and over a long duration. Duarte et al (2013) take the opposite view, that the oligotrophic subtropical gyres are net heterotrophic, with R exceeding the GPP. This idea -- that large, remote areas of the upper ocean could be net heterotrophic raises of host of fundamental scientific questions about the metabolic processes of photosynthesis and respiration that underlie ocean ecology and global biogeochemistry. The question remains unresolved, in part, because the net state is finely balanced between large opposing fluxes and most current measurements have large uncertainties. This challenging question must be studied against the background of large, anthropogenically-driven changes in ocean ecology and biogeochemistry Current trends of anthropogenic change make it an urgent problem to solve and also greatly complicate finding that solution.
-
ArticleA method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes(Public Library of Science, 2009-07-27) Amaral-Zettler, Linda A. ; McCliment, Elizabeth A. ; Ducklow, Hugh W. ; Huse, Susan M.Massively parallel pyrosequencing of amplicons from the V6 hypervariable regions of small-subunit (SSU) ribosomal RNA (rRNA) genes is commonly used to assess diversity and richness in bacterial and archaeal populations. Recent advances in pyrosequencing technology provide read lengths of up to 240 nucleotides. Amplicon pyrosequencing can now be applied to longer variable regions of the SSU rRNA gene including the V9 region in eukaryotes. We present a protocol for the amplicon pyrosequencing of V9 regions for eukaryotic environmental samples for biodiversity inventories and species richness estimation. The International Census of Marine Microbes (ICoMM) and the Microbial Inventory Research Across Diverse Aquatic Long Term Ecological Research Sites (MIRADA-LTERs) projects are already employing this protocol for tag sequencing of eukaryotic samples in a wide diversity of both marine and freshwater environments. Massively parallel pyrosequencing of eukaryotic V9 hypervariable regions of SSU rRNA genes provides a means of estimating species richness from deeply-sampled populations and for discovering novel species from the environment.
-
ArticleOceanic heterotrophic bacterial nutrition by semilabile DOM as revealed by data assimilative modeling(Inter-Research, 2010-08-03) Luo, Ya-Wei ; Friedrichs, Marjorie A. M. ; Doney, Scott C. ; Church, Matthew J. ; Ducklow, Hugh W.Previous studies have focused on the role of labile dissolved organic matter (DOM) (defined as turnover time of ~1 d) in supporting heterotrophic bacterial production, but have mostly neglected semilabile DOM (defined as turnover time of ~100 to 1000 d) as a potential substrate for heterotrophic bacterial growth. To test the hypothesis that semilabile DOM supports substantial amounts of heterotrophic bacterial production in the open ocean, we constructed a 1-dimensional epipelagic ecosystem model and applied it to 3 open ocean sites: the Arabian Sea, Equatorial Pacific and Station ALOHA in the North Pacific Subtropical Gyre. The model tracks carbon, nitrogen and phosphorus with flexible stoichiometry. This study used a large number of observations, including measurements of heterotrophic bacterial production rates and standing stocks, and DOM concentration data, to rigorously test and constrain model output. Data assimilation was successfully applied to optimize the model parameters and resulted in simultaneous representation of observed nitrate, phosphate, phytoplankton and zooplankton biomass, primary production, heterotrophic bacterial biomass and production, DOM, and suspended and sinking particulate organic matter. Across the 3 ocean ecosystems examined, the data assimilation suggests semilabile DOM may support 17 to 40% of heterotrophic bacterial carbon demand. In an experiment where bacteria only utilize labile DOM, and with more of the DOM production assigned to labile DOM, the model poorly represented the observations. These results suggest that semilabile DOM may play an important role in sustaining heterotrophic bacterial growth in diverse regions of the open ocean.
-
ArticleClimate forcing for dynamics of dissolved inorganic nutrients at Palmer Station, Antarctica : an interdecadal (1993–2013) analysis(John Wiley & Sons, 2016-09-17) Kim, Hyewon Heather ; Doney, Scott C. ; Iannuzzi, Richard A. ; Meredith, Michael P. ; Martinson, Douglas G. ; Ducklow, Hugh W.We analyzed 20 years (1993–2013) of observations of dissolved inorganic macronutrients (nitrate, N; phosphate, P; and silicate, Si) and chlorophyll a (Chl) at Palmer Station, Antarctica (64.8°S, 64.1°W) to elucidate how large-scale climate and local physical forcing affect the interannual variability in the seasonal phytoplankton bloom and associated drawdown of nutrients. The leading modes of nutrients (N, P, and Si empirical orthogonal functions 1, EOF1) represent overall negative anomalies throughout growing seasons, showing a mixed signal of variability in the initial levels and drawdown thereafter (low-frequency dynamics). The second most common seasonal patterns of nitrate and phosphate (N and P EOF2) capture prolonged drawdown events during December–March, which are correlated to Chl EOF1. Si EOF2 captures a drawdown event during November–December, which is correlated to Chl EOF2. These different drawdown patterns are shaped by different sets of physical and climate forcing mechanisms. N and P drawdown events during December–March are influenced by the winter and spring Southern Annular Mode (SAM) phase, where nutrient utilization is enhanced in a stabilized upper water column as a consequence of SAM-driven winter sea ice and spring wind dynamics. Si drawdown during November–December is influenced by early sea ice retreat, where ice breakup may induce abrupt water column stratification and a subsequent diatom bloom or release of diatom cells from within the sea ice. Our findings underscore that seasonal nutrient dynamics in the coastal WAP are coupled to large-scale climate forcing and related physics, understanding of which may enable improved projections of biogeochemical responses to climate change.
-
ArticleTwo decades of inorganic carbon dynamics along the West Antarctic Peninsula(Copernicus Publications on behalf of the European Geosciences Union, 2015-11-26) Hauri, Claudine ; Doney, Scott C. ; Takahashi, Taro ; Erickson, Matthew ; Jiang, G. ; Ducklow, Hugh W.We present 20 years of seawater inorganic carbon measurements collected along the western shelf and slope of the Antarctic Peninsula. Water column observations from summertime cruises and seasonal surface underway pCO2 measurements provide unique insights into the spatial, seasonal, and interannual variability in this dynamic system. Discrete measurements from depths > 2000 m align well with World Ocean Circulation Experiment observations across the time series and underline the consistency of the data set. Surface total alkalinity and dissolved inorganic carbon data showed large spatial gradients, with a concomitant wide range of Ωarag (< 1 up to 3.9). This spatial variability was mainly driven by increasing influence of biological productivity towards the southern end of the sampling grid and meltwater input along the coast towards the northern end. Large inorganic carbon drawdown through biological production in summer caused high near-shore Ωarag despite glacial and sea-ice meltwater input. In support of previous studies, we observed Redfield behavior of regional C / N nutrient utilization, while the C / P (80.5 ± 2.5) and N / P (11.7 ± 0.3) molar ratios were significantly lower than the Redfield elemental stoichiometric values. Seasonal salinity-based predictions of Ωarag suggest that surface waters remained mostly supersaturated with regard to aragonite throughout the study. However, more than 20 % of the predictions for winters and springs between 1999 and 2013 resulted in Ωarag < 1.2. Such low levels of Ωarag may have implications for important organisms such as pteropods. Even though we did not detect any statistically significant long-term trends, the combination of on\-going ocean acidification and freshwater input may soon induce more unfavorable conditions than the ecosystem experiences today.
- «
- 1 (current)
- 2
- 3
- »