On the mechanical effects of poroelastic crystal mush in classical magma chamber models

Thumbnail Image
Date
2018-09-30
Authors
Liao, Yang
Soule, S. Adam
Jones, Meghan
Linked Authors
Person
Person
Person
Alternative Title
Date Created
Location
DOI
10.1029/2018JB015985
Related Materials
Replaces
Replaced By
Keywords
Magma chamber
Crystal mush
Poroelasticity
Abstract
Improved constraints on the mechanical behavior of magma chambers is essential for understanding volcanic processes; however, the role of crystal mush on the mechanical evolution of magma chambers has not yet been systematically studied. Existing magma chamber models typically consider magma chambers to be isolated melt bodies surrounded by elastic crust. In this study, we develop a physical model to account for the presence and properties of crystal mush in magma chambers and investigate its impact on the mechanical processes during and after injection of new magma. Our model assumes the magma chamber to be a spherical body consisting of a liquid core of fluid magma within a shell of crystal mush that behaves primarily as a poroelastic material. We investigate the characteristics of time‐dependent evolution in the magma chamber, both during and after the injection, and find that quantities such as overpressure and tensile stress continue to evolve after the injection has stopped, a feature that is absent in elastic (mushless) models. The time scales relevant to the postinjection evolution vary from hours to thousands of years, depending on the micromechanical properties of the mush, the viscosity of magma, and chamber size. We compare our poroelastic results to the behavior of a magma chamber with an effectively viscoelastic shell and find that only the poroelastic model displays a time scale dependence on the size of the chamber for any fixed mush volume fraction. This study demonstrates that crystal mush can significantly influence the mechanical behaviors of crustal magmatic reservoirs.
Description
Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 123(11), (2018): 9376-9406. doi: 10.1029/2018JB015985.
Embargo Date
Citation
Liao, Y., Soule, S. A., & Jones, M. (2018). On the mechanical effects of poroelastic crystal mush in classical magma chamber models. Journal of Geophysical Research: Solid Earth, 123, 9376–9406.
Cruises
Cruise ID
Cruise DOI
Vessel Name