Trophic regions of a hydrothermal plume dispersing away from an ultramafic-hosted vent-system : Von Damm vent-site, Mid-Cayman Rise

Thumbnail Image
Date
2013-02-22
Authors
Bennett, Sarah A.
Coleman, Max
Huber, Julie A.
Reddington, Emily
Kinsey, James C.
McIntyre, Cameron P.
Seewald, Jeffrey S.
German, Christopher R.
Alternative Title
Date Created
Location
DOI
10.1002/ggge.20063
Related Materials
Replaces
Replaced By
Keywords
Hydrothermal
Food web
Microorganisms
Plume
Carbon
Ultramafic
Abstract
Deep-sea ultramafic-hosted vent systems have the potential to provide large amounts of metabolic energy to both autotrophic and heterotrophic microorganisms in their dispersing hydrothermal plumes. Such vent-systems release large quantities of hydrogen and methane to the water column, both of which can be exploited by autotrophic microorganisms. Carbon cycling in these hydrothermal plumes may, therefore, have an important influence on open-ocean biogeochemistry. In this study, we investigated an ultramafic-hosted system on the Mid-Cayman Rise, emitting metal-poor and hydrogen sulfide-, methane-, and hydrogen-rich hydrothermal fluids. Total organic carbon concentrations in the plume ranged between 42.1 and 51.1 μM (background = 43.2 ± 0.7 μM (n = 5)) and near-field plume samples with elevated methane concentrations imply the presence of chemoautotrophic primary production and in particular methanotrophy. In parts of the plume characterized by persistent potential temperature anomalies but lacking elevated methane concentrations, we found elevated organic carbon concentrations of up to 51.1 μM, most likely resulting from the presence of heterotrophic communities, their extracellular products and vent larvae. Elevated carbon concentrations up to 47.4 μM were detected even in far-field plume samples. Within the Von Damm hydrothermal plume, we have used our data to hypothesize a microbial food web in which chemoautotrophy supports a heterotrophic community of microorganisms. Such an active microbial food web would provide a source of labile organic carbon to the deep ocean that should be considered in any future studies evaluating sources and sinks of carbon from hydrothermal venting to the deep ocean.
Description
Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 14 (2013): 317–327, doi:10.1002/ggge.20063.
Embargo Date
Citation
Geochemistry, Geophysics, Geosystems 14 (2013): 317–327
Cruises
Cruise ID
Cruise DOI
Vessel Name