Impacts of increasing anthropogenic soluble iron and nitrogen deposition on ocean biogeochemistry

Thumbnail Image
Date
2009-08-28
Authors
Krishnamurthy, Aparna
Moore, J. Keith
Mahowald, Natalie M.
Luo, Chao
Doney, Scott C.
Lindsay, Keith
Zender, Charles S.
Alternative Title
Date Created
Location
DOI
10.1029/2008GB003440
Related Materials
Replaces
Replaced By
Keywords
Soluble iron
Atmospheric nutrient
Abstract
We present results from transient sensitivity studies with the Biogeochemical Elemental Cycling (BEC) ocean model to increasing anthropogenic atmospheric inorganic nitrogen (N) and soluble iron (Fe) deposition over the industrial era. Elevated N deposition results from fossil fuel combustion and agriculture, and elevated soluble Fe deposition results from increased atmospheric processing in the presence of anthropogenic pollutants and soluble Fe from combustion sources. Simulations with increasing Fe and increasing Fe and N inputs raised simulated marine nitrogen fixation, with the majority of the increase in the subtropical North and South Pacific, and raised primary production and export in the high-nutrient low-chlorophyll (HNLC) regions. Increasing N inputs alone elevated small phytoplankton and diatom production, resulting in increased phosphorus (P) and Fe limitation for diazotrophs, hence reducing nitrogen fixation (∼6%). Globally, the simulated primary production, sinking particulate organic carbon (POC) export. and atmospheric CO2 uptake were highest under combined increase in Fe and N inputs compared to preindustrial control. Our results suggest that increasing combustion iron sources and aerosol Fe solubility along with atmospheric anthropogenic nitrogen deposition are perturbing marine biogeochemical cycling and could partially explain the observed trend toward increased P limitation at station ALOHA in the subtropical North Pacific. Excess inorganic nitrogen ([NO3 −] + [NH4 +] − 16[PO4 3−]) distributions may offer useful insights for understanding changing ocean circulation and biogeochemistry.
Description
Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 23 (2009): GB3016, doi:10.1029/2008GB003440.
Embargo Date
Citation
Global Biogeochemical Cycles 23 (2009): GB3016
Cruises
Cruise ID
Cruise DOI
Vessel Name