Lindsay
Keith
Lindsay
Keith
No Thumbnail Available
36 results
Search Results
Now showing
1 - 20 of 36
-
ArticlePreindustrial-control and twentieth-century carbon cycle experiments with the Earth System Model CESM1(BGC)(American Meteorological Society, 2014-12-15) Lindsay, Keith ; Bonan, Gordon B. ; Doney, Scott C. ; Hoffman, Forrest M. ; Lawrence, David M. ; Long, Matthew C. ; Mahowald, Natalie M. ; Moore, J. Keith ; Randerson, James T. ; Thornton, Peter E.Version 1 of the Community Earth System Model, in the configuration where its full carbon cycle is enabled, is introduced and documented. In this configuration, the terrestrial biogeochemical model, which includes carbon–nitrogen dynamics and is present in earlier model versions, is coupled to an ocean biogeochemical model and atmospheric CO2 tracers. The authors provide a description of the model, detail how preindustrial-control and twentieth-century experiments were initialized and forced, and examine the behavior of the carbon cycle in those experiments. They examine how sea- and land-to-air CO2 fluxes contribute to the increase of atmospheric CO2 in the twentieth century, analyze how atmospheric CO2 and its surface fluxes vary on interannual time scales, including how they respond to ENSO, and describe the seasonal cycle of atmospheric CO2 and its surface fluxes. While the model broadly reproduces observed aspects of the carbon cycle, there are several notable biases, including having too large of an increase in atmospheric CO2 over the twentieth century and too small of a seasonal cycle of atmospheric CO2 in the Northern Hemisphere. The biases are related to a weak response of the carbon cycle to climatic variations on interannual and seasonal time scales and to twentieth-century anthropogenic forcings, including rising CO2, land-use change, and atmospheric deposition of nitrogen.
-
ArticleCarbon-nitrogen interactions regulate climate-carbon cycle feedbacks : results from an atmosphere-ocean general circulation model(Copernicus Publications on behalf of the European Geosciences Union, 2009-10-08) Thornton, Peter E. ; Doney, Scott C. ; Lindsay, Keith ; Moore, J. Keith ; Mahowald, Natalie M. ; Randerson, James T. ; Fung, Inez Y. ; Lamarque, J.-F. ; Feddema, J. J. ; Lee, Y.-H.Inclusion of fundamental ecological interactions between carbon and nitrogen cycles in the land component of an atmosphere-ocean general circulation model (AOGCM) leads to decreased carbon uptake associated with CO2 fertilization, and increased carbon uptake associated with warming of the climate system. The balance of these two opposing effects is to reduce the fraction of anthropogenic CO2 predicted to be sequestered in land ecosystems. The primary mechanism responsible for increased land carbon storage under radiatively forced climate change is shown to be fertilization of plant growth by increased mineralization of nitrogen directly associated with increased decomposition of soil organic matter under a warming climate, which in this particular model results in a negative gain for the climate-carbon feedback. Estimates for the land and ocean sink fractions of recent anthropogenic emissions are individually within the range of observational estimates, but the combined land plus ocean sink fractions produce an airborne fraction which is too high compared to observations. This bias is likely due in part to an underestimation of the ocean sink fraction. Our results show a significant growth in the airborne fraction of anthropogenic CO2 emissions over the coming century, attributable in part to a steady decline in the ocean sink fraction. Comparison to experimental studies on the fate of radio-labeled nitrogen tracers in temperate forests indicates that the model representation of competition between plants and microbes for new mineral nitrogen resources is reasonable. Our results suggest a weaker dependence of net land carbon flux on soil moisture changes in tropical regions, and a stronger positive growth response to warming in those regions, than predicted by a similar AOGCM implemented without land carbon-nitrogen interactions. We expect that the between-model uncertainty in predictions of future atmospheric CO2 concentration and associated anthropogenic climate change will be reduced as additional climate models introduce carbon-nitrogen cycle interactions in their land components.
-
PreprintSkill metrics for confronting global upper ocean ecosystem-biogeochemistry models against field and remote sensing data( 2008-03-04) Doney, Scott C. ; Lima, Ivan D. ; Moore, J. Keith ; Lindsay, Keith ; Behrenfeld, Michael J. ; Westberry, Toby K. ; Mahowald, Natalie M. ; Glover, David M. ; Takahashi, TaroWe present a generalized framework for assessing the skill of global upper ocean ecosystem-biogeochemical models against in-situ field data and satellite observations. We illustrate the approach utilizing a multi-decade (1979-2004) hindcast experiment conducted with the Community Climate System Model (CCSM-3) ocean carbon model. The CCSM-3 ocean carbon model incorporates a multi-nutrient, multi-phytoplankton functional group ecosystem module coupled with a carbon, oxygen, nitrogen, phosphorus, silicon, and iron biogeochemistry module embedded in a global, threedimensional ocean general circulation model. The model is forced with physical climate forcing from atmospheric reanalysis and satellite data products and time-varying atmospheric dust deposition. Data-based skill metrics are used to evaluate the simulated time-mean spatial patterns, seasonal cycle amplitude and phase, and subannual to interannual variability. Evaluation data include: sea surface temperature and mixed layer depth; satellite derived surface ocean chlorophyll, primary productivity, phytoplankton growth rate and carbon biomass; large-scale climatologies of surface nutrients, pCO2, and air-sea CO2 and O2 flux; and time-series data from the Joint Global Ocean Flux Study (JGOFS). Where the data is sufficient, we construct quantitative skill metrics using: model-data residuals, time-space correlation, root mean square error, and Taylor diagrams.
-
ArticleMechanisms controlling dissolved iron distribution in the North Pacific : a model study(American Geophysical Union, 2011-07-22) Misumi, Kazuhiro ; Tsumune, Daisuke ; Yoshida, Yoshikatsu ; Uchimoto, K. ; Nakamura, T. ; Nishioka, Jun ; Mitsudera, Humio ; Bryan, Frank O. ; Lindsay, Keith ; Moore, J. Keith ; Doney, Scott C.Mechanisms controlling the dissolved iron distribution in the North Pacific are investigated using the Biogeochemical Elemental Cycling (BEC) model with a resolution of approximately 1° in latitude and longitude and 60 vertical levels. The model is able to reproduce the general distribution of iron as revealed in available field data: surface concentrations are generally below 0.2 nM; concentrations increase with depth; and values in the lower pycnocline are especially high in the northwestern Pacific and off the coast of California. Sensitivity experiments changing scavenging regimes and external iron sources indicate that lateral transport of sedimentary iron from continental margins into the open ocean causes the high concentrations in these regions. This offshore penetration only appears under a scavenging regime where iron has a relatively long residence time at high concentrations, namely, the order of years. Sedimentary iron is intensively supplied around continental margins, resulting in locally high concentrations; the residence time with respect to scavenging determines the horizontal scale of elevated iron concentrations. Budget analysis for iron reveals the processes by which sedimentary iron is transported to the open ocean. Horizontal mixing transports sedimentary iron from the boundary into alongshore currents, which then carry high iron concentrations into the open ocean in regions where the alongshore currents separate from the coast, most prominently in the northwestern Pacific and off of California.
-
PreprintEvolution of carbon sinks in a changing climate( 2005-06-13) Fung, Inez Y. ; Doney, Scott C. ; Lindsay, Keith ; John, Jasmin G.Climate change is expected to influence the capacities of the land and oceans to act as repositories for anthropogenic CO2 and hence provide a feedback to climate change. A series of experiments with the National Center for Atmospheric Research–Climate System Model 1 coupled carbon–climate model shows that carbon sink strengths vary with the rate of fossil fuel emissions, so that carbon storage capacities of the land and oceans decrease and climate warming accelerates with faster CO2 emissions. Furthermore, there is a positive feedback between the carbon and climate systems, so that climate warming acts to increase the airborne fraction of anthropogenic CO2 and amplify the climate change itself. Globally, the amplification is small at the end of the 21st century in this model because of its low transient climate response and the near-cancellation between large regional changes in the hydrologic and ecosystem responses. Analysis of our results in the context of comparable models suggests that destabilization of the tropical land sink is qualitatively robust, although its degree is uncertain.
-
ArticleClimate-mediated changes to mixed-layer properties in the Southern Ocean : assessing the phytoplankton response(Copernicus Publications on behalf of the European Geosciences Union, 2008-05-19) Boyd, Philip W. ; Doney, Scott C. ; Strzepek, R. ; Dusenberry, Jeffrey A. ; Lindsay, Keith ; Fung, Inez Y.Concurrent changes in ocean chemical and physical properties influence phytoplankton dynamics via alterations in carbonate chemistry, nutrient and trace metal inventories and upper ocean light environment. Using a fully coupled, global carbon-climate model (Climate System Model 1.4-carbon), we quantify anthropogenic climate change relative to the background natural interannual variability for the Southern Ocean over the period 2000 and 2100. Model results are interpreted using our understanding of the environmental control of phytoplankton growth rates – leading to two major findings. Firstly, comparison with results from phytoplankton perturbation experiments, in which environmental properties have been altered for key species (e.g., bloom formers), indicates that the predicted rates of change in oceanic properties over the next few decades are too subtle to be represented experimentally at present. Secondly, the rate of secular climate change will not exceed background natural variability, on seasonal to interannual time-scales, for at least several decades – which may not provide the prevailing conditions of change, i.e. constancy, needed for phytoplankton adaptation. Taken together, the relatively subtle environmental changes, due to climate change, may result in adaptation by resident phytoplankton, but not for several decades due to the confounding effects of climate variability. This presents major challenges for the detection and attribution of climate change effects on Southern Ocean phytoplankton. We advocate the development of multi-faceted tests/metrics that will reflect the relative plasticity of different phytoplankton functional groups and/or species to respond to changing ocean conditions.
-
ArticleImpact of ocean carbon system variability on the detection of temporal increases in anthropogenic CO2(American Geophysical Union, 2008-03-19) Levine, Naomi M. ; Doney, Scott C. ; Wanninkhof, Rik ; Lindsay, Keith ; Fung, Inez Y.Estimates of temporal trends in oceanic anthropogenic carbon dioxide (CO2) rely on the ability of empirical methods to remove the large natural variability of the ocean carbon system. A coupled carbon-climate model is used to evaluate these empirical methods. Both the ΔC* and multiple linear regression (MLR) techniques reproduce the predicted increase in dissolved inorganic carbon for the majority of the ocean and have similar average percent errors for decadal differences (24.1% and 25.5%, respectively). However, this study identifies several regions where these methods may introduce errors. Of particular note are mode and deep water formation regions, where changes in air-sea disequilibrium and structure in the MLR residuals introduce errors. These results have significant implications for decadal repeat hydrography programs, indicating the need for subannual sampling in certain regions of the oceans in order to better constrain the natural variability in the system and to robustly estimate the intrusion of anthropogenic CO2.
-
ArticleNorth Pacific carbon cycle response to climate variability on seasonal to decadal timescales(American Geophysical Union, 2006-07-04) McKinley, Galen A. ; Takahashi, Taro ; Buitenhuis, Erik T. ; Chai, Fei ; Christian, James R. ; Doney, Scott C. ; Jiang, Mingshun ; Lindsay, Keith ; Moore, J. Keith ; Le Quere, Corinne ; Lima, Ivan D. ; Murtugudde, Raghu ; Shi, L. ; Wetzel, PatrickClimate variability drives significant changes in the physical state of the North Pacific, and thus there may be important impacts of climate variability on the upper ocean carbon balance across the basin. We address this issue by considering the response of seven biogeochemical ocean models to climate variability in the North Pacific. The models’ upper ocean pCO2 and air-sea CO2 flux respond similarly to climate variability on seasonal to decadal timescales. Modeled seasonal cycles of pCO2 and its temperature and non-temperature driven components at three contrasting oceanographic sites capture the basic features found in observations [Takahashi et al., 2002, 2006; Keeling et al., 2004; Brix et al., 2004]. However, particularly in the Western Subarctic Gyre, the models have difficulty representing the temporal structure of the total pCO2 cycle because it results from the difference of these two large and opposing components. In all but one model, the airsea CO2 flux interannual variability (1σ) in the North Pacific is smaller (ranges across models from 0.03 to 0.11 PgC/yr) than in the Tropical Pacific (ranges across models from 0.08 to 0.19 PgC/yr), and the timeseries of the first or second EOF of the air-sea CO2 flux has a significant correlation with the Pacific Decadal Oscillation (PDO). Though air-sea CO2 flux anomalies are correlated with the PDO, their magnitudes are small (up to ±0.025 PgC/yr (1σ)). Flux anomalies are damped because anomalies in the key drivers of pCO2 (temperature, dissolved inorganic carbon (DIC) and alkalinity) are all of similar magnitude and have strongly opposing effects that damp total pCO2 anomalies.
-
PreprintAsynchronous warming and δ18O evolution of deep Atlantic water masses during the last deglaciation( 2017-08-21) Zhang, Jiaxu ; Liu, Zhengyu ; Brady, Esther C. ; Oppo, Delia W. ; Clark, Peter U. ; Jahn, Alexandra ; Marcott, Shaun A. ; Lindsay, KeithThe large-scale reorganization of deep-ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ18O of benthic foraminiferal calcite (δ18Oc). Here we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ18O evolution. Model results suggest that in response to North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties due to freshwater input as suggested previously, the observed phasing difference of deep δ18Oc likely reflects early warming of the deep northern North Atlantic by ~1.4°C while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong mid-depth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way ocean circulation affects heat, a dynamic tracer, is considerably different than how it affects passive tracers like δ18O, and call for caution when inferring water mass changes from δ18Oc records while assuming uniform changes in deep temperatures.
-
ArticleRemineralization dominating the δ13 C decrease in the mid-depth Atlantic during the last deglaciation(Elsevier, 2021-07-20) Gu, Sifan ; Liu, Zhengyu ; Oppo, Delia W. ; Lynch-Stieglitz, Jean ; Jahn, Alexandra ; Zhang, Jiaxu ; Lindsay, Keith ; Wu, Lixinδ 13 C records from the mid-depth Atlantic show a pronounced decrease during the Heinrich Stadial 1 (HS1), a deglacial episode of dramatically weakened Atlantic Meridional Ocean Circulation (AMOC). Proposed explanations for this mid-depth decrease include a greater fraction of δ 13 C -depleted southern sourced water (SSW), a δ 13 C decrease in the North Atlantic Deep Water (NADW) end-member, and accumulation of the respired organic carbon. However, the relative importance of these proposed mechanisms cannot be quantitatively constrained from current available observations alone. Here we diagnose the individual contributions to the deglacial Atlantic mid-depth δ 13 C change from these mechanisms using a transient simulation with carbon isotopes and idealized tracers. We find that although the fraction of the low- δ 13 C SSW increases in response to a weaker AMOC during HS1, the water mass mixture change only plays a minor role in the mid-depth Atlantic δ 13 C decrease. Instead, increased remineralization due to the AMOC-induced mid-depth ocean ventilation decrease is the dominant cause. In this study, we differentiate between the deep end-members, which are assigned to deep water regions used in previous paleoceanography studies, and the surface end-members, which are from the near-surface water defined from the physical origin of deep water masses. We find that the deep NADW end-member includes additional remineralized material accumulated when sinking from the surface (surface NADW end-member). Therefore, the surface end-members should be used in diagnosing mechanisms of changes. Furthermore, our results suggest that remineralization in the surface end-member is more critical than the remineralization along the transport pathway from the near-surface formation region to the deep ocean, especially during the early deglaciation.
-
ArticleOceanic sources, sinks, and transport of atmospheric CO2(American Geophysical Union, 2009-02-18) Gruber, Nicolas ; Gloor, Emanuel ; Mikaloff Fletcher, Sara E. ; Doney, Scott C. ; Dutkiewicz, Stephanie ; Follows, Michael J. ; Gerber, Markus ; Jacobson, Andrew R. ; Joos, Fortunat ; Lindsay, Keith ; Menemenlis, Dimitris ; Mouchet, Anne ; Muller, Simon A. ; Sarmiento, Jorge L. ; Takahashi, TaroWe synthesize estimates of the contemporary net air-sea CO2 flux on the basis of an inversion of interior ocean carbon observations using a suite of 10 ocean general circulation models (Mikaloff Fletcher et al., 2006, 2007) and compare them to estimates based on a new climatology of the air-sea difference of the partial pressure of CO2 (pCO2) (Takahashi et al., 2008). These two independent flux estimates reveal a consistent description of the regional distribution of annual mean sources and sinks of atmospheric CO2 for the decade of the 1990s and the early 2000s with differences at the regional level of generally less than 0.1 Pg C a−1. This distribution is characterized by outgassing in the tropics, uptake in midlatitudes, and comparatively small fluxes in thehigh latitudes. Both estimates point toward a small (∼ −0.3 Pg C a−1) contemporary CO2 sink in the Southern Ocean (south of 44°S), a result of the near cancellation between a substantial outgassing of natural CO2 and a strong uptake of anthropogenic CO2. A notable exception in the generally good agreement between the two estimates exists within the Southern Ocean: the ocean inversion suggests a relatively uniform uptake, while the pCO2-based estimate suggests strong uptake in the region between 58°S and 44°S, and a source in the region south of 58°S. Globally and for a nominal period between 1995 and 2000, the contemporary net air-sea flux of CO2 is estimated to be −1.7 ± 0.4 Pg C a−1 (inversion) and −1.4 ± 0.7 Pg C a−1 (pCO2-climatology), respectively, consisting of an outgassing flux of river-derived carbon of ∼+0.5 Pg C a−1, and an uptake flux of anthropogenic carbon of −2.2 ± 0.3 Pg C a−1 (inversion) and −1.9 ± 0.7 Pg C a−1 (pCO2-climatology). The two flux estimates also imply a consistent description of the contemporary meridional transport of carbon with southward ocean transport throughout most of the Atlantic basin, and strong equatorward convergence in the Indo-Pacific basins. Both transport estimates suggest a small hemispheric asymmetry with a southward transport of between −0.2 and −0.3 Pg C a−1 across the equator. While the convergence of these two independent estimates is encouraging and suggests that it is now possible to provide relatively tight constraints for the net air-sea CO2 fluxes at the regional basis, both studies are limited by their lack of consideration of long-term changes in the ocean carbon cycle, such as the recent possible stalling in the expected growth of the Southern Ocean carbon sink.
-
ArticleNatural variability in a stable, 1000-yr global coupled climate-carbon cycle simulation(American Meteorological Society, 2006-07-01) Doney, Scott C. ; Lindsay, Keith ; Fung, Inez Y. ; John, Jasmin G.A new 3D global coupled carbon–climate model is presented in the framework of the Community Climate System Model (CSM-1.4). The biogeochemical module includes explicit land water–carbon coupling, dynamic carbon allocation to leaf, root, and wood, prognostic leaf phenology, multiple soil and detrital carbon pools, oceanic iron limitation, a full ocean iron cycle, and 3D atmospheric CO2 transport. A sequential spinup strategy is utilized to minimize the coupling shock and drifts in land and ocean carbon inventories. A stable, 1000-yr control simulation [global annual mean surface temperature ±0.10 K and atmospheric CO2 ± 1.2 ppm (1σ)] is presented with no flux adjustment in either physics or biogeochemistry. The control simulation compares reasonably well against observations for key annual mean and seasonal carbon cycle metrics; regional biases in coupled model physics, however, propagate clearly into biogeochemical error patterns. Simulated interannual-to-centennial variability in atmospheric CO2 is dominated by terrestrial carbon flux variability, ±0.69 Pg C yr−1 (1σ global net annual mean), which in turn reflects primarily regional changes in net primary production modulated by moisture stress. Power spectra of global CO2 fluxes are white on time scales beyond a few years, and thus most of the variance is concentrated at high frequencies (time scale <4 yr). Model variability in air–sea CO2 fluxes, ±0.10 Pg C yr−1 (1σ global annual mean), is generated by variability in sea surface temperature, wind speed, export production, and mixing/upwelling. At low frequencies (time scale >20 yr), global net ocean CO2 flux is strongly anticorrelated (0.7–0.95) with the net CO2 flux from land; the ocean tends to damp (20%–25%) slow variations in atmospheric CO2 generated by the terrestrial biosphere. The intrinsic, unforced natural variability in land and ocean carbon storage is the “noise” that complicates the detection and mechanistic attribution of contemporary anthropogenic carbon sinks.
-
ArticleImpacts of increasing anthropogenic soluble iron and nitrogen deposition on ocean biogeochemistry(American Geophysical Union, 2009-08-28) Krishnamurthy, Aparna ; Moore, J. Keith ; Mahowald, Natalie M. ; Luo, Chao ; Doney, Scott C. ; Lindsay, Keith ; Zender, Charles S.We present results from transient sensitivity studies with the Biogeochemical Elemental Cycling (BEC) ocean model to increasing anthropogenic atmospheric inorganic nitrogen (N) and soluble iron (Fe) deposition over the industrial era. Elevated N deposition results from fossil fuel combustion and agriculture, and elevated soluble Fe deposition results from increased atmospheric processing in the presence of anthropogenic pollutants and soluble Fe from combustion sources. Simulations with increasing Fe and increasing Fe and N inputs raised simulated marine nitrogen fixation, with the majority of the increase in the subtropical North and South Pacific, and raised primary production and export in the high-nutrient low-chlorophyll (HNLC) regions. Increasing N inputs alone elevated small phytoplankton and diatom production, resulting in increased phosphorus (P) and Fe limitation for diazotrophs, hence reducing nitrogen fixation (∼6%). Globally, the simulated primary production, sinking particulate organic carbon (POC) export. and atmospheric CO2 uptake were highest under combined increase in Fe and N inputs compared to preindustrial control. Our results suggest that increasing combustion iron sources and aerosol Fe solubility along with atmospheric anthropogenic nitrogen deposition are perturbing marine biogeochemical cycling and could partially explain the observed trend toward increased P limitation at station ALOHA in the subtropical North Pacific. Excess inorganic nitrogen ([NO3 −] + [NH4 +] − 16[PO4 3−]) distributions may offer useful insights for understanding changing ocean circulation and biogeochemistry.
-
ArticleInverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean(American Geophysical Union, 2006-04-05) Mikaloff Fletcher, Sara E. ; Gruber, Nicolas ; Jacobson, Andrew R. ; Doney, Scott C. ; Dutkiewicz, Stephanie ; Gerber, Markus ; Follows, Michael J. ; Joos, Fortunat ; Lindsay, Keith ; Menemenlis, Dimitris ; Mouchet, Anne ; Muller, Simon A. ; Sarmiento, Jorge L.Regional air-sea fluxes of anthropogenic CO2 are estimated using a Green's function inversion method that combines data-based estimates of anthropogenic CO2 in the ocean with information about ocean transport and mixing from a suite of Ocean General Circulation Models (OGCMs). In order to quantify the uncertainty associated with the estimated fluxes owing to modeled transport and errors in the data, we employ 10 OGCMs and three scenarios representing biases in the data-based anthropogenic CO2 estimates. On the basis of the prescribed anthropogenic CO2 storage, we find a global uptake of 2.2 ± 0.25 Pg C yr−1, scaled to 1995. This error estimate represents the standard deviation of the models weighted by a CFC-based model skill score, which reduces the error range and emphasizes those models that have been shown to reproduce observed tracer concentrations most accurately. The greatest anthropogenic CO2 uptake occurs in the Southern Ocean and in the tropics. The flux estimates imply vigorous northward transport in the Southern Hemisphere, northward cross-equatorial transport, and equatorward transport at high northern latitudes. Compared with forward simulations, we find substantially more uptake in the Southern Ocean, less uptake in the Pacific Ocean, and less global uptake. The large-scale spatial pattern of the estimated flux is generally insensitive to possible biases in the data and the models employed. However, the global uptake scales approximately linearly with changes in the global anthropogenic CO2 inventory. Considerable uncertainties remain in some regions, particularly the Southern Ocean.
-
PreprintAnthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms( 2005-07-29) Orr, James C. ; Fabry, Victoria J. ; Aumont, Olivier ; Bopp, Laurent ; Doney, Scott C. ; Feely, Richard A. ; Gnanadesikan, Anand ; Gruber, Nicolas ; Ishida, Akio ; Joos, Fortunat ; Key, Robert M. ; Lindsay, Keith ; Maier-Reimer, Ernst ; Matear, Richard J. ; Monfray, Patrick ; Mouchet, Anne ; Najjar, Raymond G. ; Plattner, Gian-Kasper ; Rodgers, Keith B. ; Sabine, Christopher L. ; Sarmiento, Jorge L. ; Schlitzer, Reiner ; Slater, Richard D. ; Totterdell, Ian J. ; Weirig, Marie-France ; Yamanaka, Yasuhiro ; Yool, AndrewThe surface ocean is everywhere saturated with respect to calcium carbonate (CaCO3). Yet increasing atmospheric CO2 reduces ocean pH and carbonate ion concentrations [CO32−] and thus the level of saturation. Reduced saturation states are expected to affect marine calcifiers even though it has been estimated that all surface waters will remain saturated for centuries. Here we show, however, that some surface waters will become undersaturated within decades. When atmospheric CO2 reaches 550 ppmv, in year 2050 under the IS92a business-as-usual scenario, Southern Ocean surface waters begin to become undersaturated with respect to aragonite, a metastable form of CaCO3. By 2100 as atmospheric CO2 reaches 788 ppmv, undersaturation extends throughout the entire Southern Ocean (< 60°S) and into the subarctic Pacific. These changes will threaten high-latitude aragonite secreting organisms including cold-water corals, which provide essential fish habitat, and shelled pteropods, an abundant food source for marine predators.
-
ArticleHumic substances may control dissolved iron distributions in the global ocean : implications from numerical simulations(John Wiley & Sons, 2013-05-20) Misumi, Kazuhiro ; Lindsay, Keith ; Moore, J. Keith ; Doney, Scott C. ; Tsumune, Daisuke ; Yoshida, YoshikatsuThis study used an ocean general circulation model to simulate the marine iron cycle in an investigation of how simulated distributions of weak iron-binding ligands would be expected to control dissolved iron concentrations in the ocean, with a particular focus on deep ocean waters. The distribution of apparent oxygen utilization was used as a proxy for humic substances that have recently been hypothesized to account for the bulk of weak iron-binding ligands in seawater. Compared to simulations using a conventional approach with homogeneous ligand distributions, the simulations that incorporated spatially variable ligand concentrations exhibited substantial improvement in the simulation of global dissolved iron distributions as revealed by comparisons with available field data. The improved skill of the simulations resulted largely because the spatially variable ligand distributions led to a more reasonable basin-scale variation of the residence time of iron when present at high concentrations. The model results, in conjunction with evidence from recent field studies, suggest that humic substances play an important role in the iron cycle in the ocean.
-
ArticleInverse estimates of the oceanic sources and sinks of natural CO2 and the implied oceanic carbon transport(American Geophysical Union, 2007-02-10) Mikaloff Fletcher, Sara E. ; Gruber, Nicolas ; Jacobson, Andrew R. ; Gloor, Emanuel ; Doney, Scott C. ; Dutkiewicz, Stephanie ; Gerber, Markus ; Follows, Michael J. ; Joos, Fortunat ; Lindsay, Keith ; Menemenlis, Dimitris ; Mouchet, Anne ; Muller, Simon A. ; Sarmiento, Jorge L.We use an inverse method to estimate the global-scale pattern of the air-sea flux of natural CO2, i.e., the component of the CO2 flux due to the natural carbon cycle that already existed in preindustrial times, on the basis of ocean interior observations of dissolved inorganic carbon (DIC) and other tracers, from which we estimate ΔC gasex , i.e., the component of the observed DIC that is due to the gas exchange of natural CO2. We employ a suite of 10 different Ocean General Circulation Models (OGCMs) to quantify the error arising from uncertainties in the modeled transport required to link the interior ocean observations to the surface fluxes. The results from the contributing OGCMs are weighted using a model skill score based on a comparison of each model's simulated natural radiocarbon with observations. We find a pattern of air-sea flux of natural CO2 characterized by outgassing in the Southern Ocean between 44°S and 59°S, vigorous uptake at midlatitudes of both hemispheres, and strong outgassing in the tropics. In the Northern Hemisphere and the tropics, the inverse estimates generally agree closely with the natural CO2 flux results from forward simulations of coupled OGCM-biogeochemistry models undertaken as part of the second phase of the Ocean Carbon Model Intercomparison Project (OCMIP-2). The OCMIP-2 simulations find far less air-sea exchange than the inversion south of 20°S, but more recent forward OGCM studies are in better agreement with the inverse estimates in the Southern Hemisphere. The strong source and sink pattern south of 20°S was not apparent in an earlier inversion study, because the choice of region boundaries led to a partial cancellation of the sources and sinks. We show that the inversely estimated flux pattern is clearly traceable to gradients in the observed ΔC gasex , and that it is relatively insensitive to the choice of OGCM or potential biases in ΔC gasex . Our inverse estimates imply a southward interhemispheric transport of 0.31 ± 0.02 Pg C yr−1, most of which occurs in the Atlantic. This is considerably smaller than the 1 Pg C yr−1 of Northern Hemisphere uptake that has been inferred from atmospheric CO2 observations during the 1980s and 1990s, which supports the hypothesis of a Northern Hemisphere terrestrial sink.
-
ArticleUpper ocean ecosystem dynamics and iron cycling in a global three-dimensional model(American Geophysical Union, 2004-12-14) Moore, J. Keith ; Doney, Scott C. ; Lindsay, KeithA global three-dimensional marine ecosystem model with several key phytoplankton functional groups, multiple limiting nutrients, explicit iron cycling, and a mineral ballast/organic matter parameterization is run within a global ocean circulation model. The coupled biogeochemistry/ecosystem/circulation (BEC) model reproduces known basin-scale patterns of primary and export production, biogenic silica production, calcification, chlorophyll, macronutrient and dissolved iron concentrations. The model captures observed high nitrate, low chlorophyll (HNLC) conditions in the Southern Ocean, subarctic and equatorial Pacific. Spatial distributions of nitrogen fixation are in general agreement with field data, with total N-fixation of 55 Tg N. Diazotrophs directly account for a small fraction of primary production (0.5%) but indirectly support 10% of primary production and 8% of sinking particulate organic carbon (POC) export. Diatoms disproportionately contribute to export of POC out of surface waters, but CaCO3 from the coccolithophores is the key driver of POC flux to the deep ocean in the model. An iron source from shallow ocean sediments is found critical in preventing iron limitation in shelf regions, most notably in the Arctic Ocean, but has a relatively localized impact. In contrast, global-scale primary production, export production, and nitrogen fixation are all sensitive to variations in atmospheric mineral dust inputs. The residence time for dissolved iron in the upper ocean is estimated to be a few years to a decade. Most of the iron utilized by phytoplankton is from subsurface sources supplied by mixing, entrainment, and ocean circulation. However, owing to the short residence time of iron in the upper ocean, this subsurface iron pool is critically dependent on continual replenishment from atmospheric dust deposition and, to a lesser extent, lateral transport from shelf regions.
-
ArticleProjected 21st century decrease in marine productivity : a multi-model analysis(Copernicus Publications on behalf of the European Geosciences Union, 2010-03-11) Steinacher, M. ; Joos, Fortunat ; Frolicher, T. L. ; Bopp, Laurent ; Cadule, P. ; Cocco, V. ; Doney, Scott C. ; Gehlen, M. ; Lindsay, Keith ; Moore, J. Keith ; Schneider, B. ; Segschneider, J.Changes in marine net primary productivity (PP) and export of particulate organic carbon (EP) are projected over the 21st century with four global coupled carbon cycle-climate models. These include representations of marine ecosystems and the carbon cycle of different structure and complexity. All four models show a decrease in global mean PP and EP between 2 and 20% by 2100 relative to preindustrial conditions, for the SRES A2 emission scenario. Two different regimes for productivity changes are consistently identified in all models. The first chain of mechanisms is dominant in the low- and mid-latitude ocean and in the North Atlantic: reduced input of macro-nutrients into the euphotic zone related to enhanced stratification, reduced mixed layer depth, and slowed circulation causes a decrease in macro-nutrient concentrations and in PP and EP. The second regime is projected for parts of the Southern Ocean: an alleviation of light and/or temperature limitation leads to an increase in PP and EP as productivity is fueled by a sustained nutrient input. A region of disagreement among the models is the Arctic, where three models project an increase in PP while one model projects a decrease. Projected changes in seasonal and interannual variability are modest in most regions. Regional model skill metrics are proposed to generate multi-model mean fields that show an improved skill in representing observation-based estimates compared to a simple multi-model average. Model results are compared to recent productivity projections with three different algorithms, usually applied to infer net primary production from satellite observations.
-
ArticleMulticentury changes in ocean and land contributions to the climate-carbon feedback(John Wiley & Sons, 2015-06-02) Randerson, James T. ; Lindsay, Keith ; Munoz, E. ; Fu, W. ; Moore, J. Keith ; Hoffman, Forrest M. ; Mahowald, Natalie M. ; Doney, Scott C.Improved constraints on carbon cycle responses to climate change are needed to inform mitigation policy, yet our understanding of how these responses may evolve after 2100 remains highly uncertain. Using the Community Earth System Model (v1.0), we quantified climate-carbon feedbacks from 1850 to 2300 for the Representative Concentration Pathway 8.5 and its extension. In three simulations, land and ocean biogeochemical processes experienced the same trajectory of increasing atmospheric CO2. Each simulation had a different degree of radiative coupling for CO2 and other greenhouse gases and aerosols, enabling diagnosis of feedbacks. In a fully coupled simulation, global mean surface air temperature increased by 9.3 K from 1850 to 2300, with 4.4 K of this warming occurring after 2100. Excluding CO2, warming from other greenhouse gases and aerosols was 1.6 K by 2300, near a 2 K target needed to avoid dangerous anthropogenic interference with the climate system. Ocean contributions to the climate-carbon feedback increased considerably over time and exceeded contributions from land after 2100. The sensitivity of ocean carbon to climate change was found to be proportional to changes in ocean heat content, as a consequence of this heat modifying transport pathways for anthropogenic CO2 inflow and solubility of dissolved inorganic carbon. By 2300, climate change reduced cumulative ocean uptake by 330 Pg C, from 1410 Pg C to 1080 Pg C. Land fluxes similarly diverged over time, with climate change reducing stocks by 232 Pg C. Regional influence of climate change on carbon stocks was largest in the North Atlantic Ocean and tropical forests of South America. Our analysis suggests that after 2100, oceans may become as important as terrestrial ecosystems in regulating the magnitude of the climate-carbon feedback.