Conversion to soy on the Amazonian agricultural frontier increases streamflow without affecting stormflow dynamics

Thumbnail Image
Hayhoe, Shelby J.
Neill, Christopher
Porder, Stephen
McHorney, Richard
LeFebvre, Paul
Coe, Michael T.
Elsenbeer, Helmut
Krusche, Alex V.
Alternative Title
Date Created
Related Materials
Replaced By
Water yield
Land use change
Soybean cultivation
Large-scale soy agriculture in the southern Brazilian Amazon now rivals deforestation for pasture as the region’s predominant form of land use change. Such landscape level change can have substantial consequences for local and regional hydrology, which remain relatively unstudied. We examined how the conversion to soy agriculture influences water balances and stormflows using stream discharge (water yields) and the timing of discharge (stream hydrographs) in small (2.5 to 13.5 km2) forested and soy headwater watersheds in the Upper Xingu Watershed in the state of Mato Grosso, Brazil. We monitored water yield for one year in three forested and four soy watersheds. Mean daily water yields were approximately four times higher in soy than forested watersheds, and soy watersheds showed greater seasonal variability in discharge. The contribution of stormflows to annual streamflow in all streams was low (< 13% of annual streamflow), and the contribution of stormflow to streamflow did not differ between land uses. If the increases in water yield observed in this study are typical, landscape-scale conversion to soy substantially alters water-balance, potentially altering the regional hydrology over large areas of the southern Amazon.
Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Global Change Biology 17 (2011): 1821–1833, doi:10.1111/j.1365-2486.2011.02392.x.
Embargo Date
Cruise ID
Cruise DOI
Vessel Name