Coe
Michael T.
Coe
Michael T.
No Thumbnail Available
Search Results
Now showing
1 - 5 of 5
-
PreprintConversion to soy on the Amazonian agricultural frontier increases streamflow without affecting stormflow dynamics( 2011-01) Hayhoe, Shelby J. ; Neill, Christopher ; Porder, Stephen ; McHorney, Richard ; LeFebvre, Paul ; Coe, Michael T. ; Elsenbeer, Helmut ; Krusche, Alex V.Large-scale soy agriculture in the southern Brazilian Amazon now rivals deforestation for pasture as the region’s predominant form of land use change. Such landscape level change can have substantial consequences for local and regional hydrology, which remain relatively unstudied. We examined how the conversion to soy agriculture influences water balances and stormflows using stream discharge (water yields) and the timing of discharge (stream hydrographs) in small (2.5 to 13.5 km2) forested and soy headwater watersheds in the Upper Xingu Watershed in the state of Mato Grosso, Brazil. We monitored water yield for one year in three forested and four soy watersheds. Mean daily water yields were approximately four times higher in soy than forested watersheds, and soy watersheds showed greater seasonal variability in discharge. The contribution of stormflows to annual streamflow in all streams was low (< 13% of annual streamflow), and the contribution of stormflow to streamflow did not differ between land uses. If the increases in water yield observed in this study are typical, landscape-scale conversion to soy substantially alters water-balance, potentially altering the regional hydrology over large areas of the southern Amazon.
-
ArticleModeling nitrous oxide emissions from large-scale intensive cropping systems in the southern Amazon(Frontiers Media, 2021-12-10) Costa, Ciniro ; Galford, Gillian L. ; Coe, Michael T. ; Macedo, Marcia N. ; Jankowski, KathiJo ; O’Connell, Christine ; Neill, ChristopherNitrogen (N) fertilizer use is rapidly intensifying on tropical croplands and has the potential to increase emissions of the greenhouse gas, nitrous oxide (N2O). Since about 2005 Mato Grosso (MT), Brazil has shifted from single-cropped soybeans to double-cropping soybeans with maize, and now produces 1.5% of the world's maize. This production shift required an increase in N fertilization, but the effects on N2O emissions are poorly known. We calibrated the process-oriented biogeochemical DeNitrification-DeComposition (DNDC) model to simulate N2O emissions and crop production from soybean and soybean-maize cropping systems in MT. After model validation with field measurements and adjustments for hydrological properties of tropical soils, regional simulations suggested N2O emissions from soybean-maize cropland increased almost fourfold during 2001–2010, from 1.1 ± 1.1 to 4.1 ± 3.2 Gg 1014 N-N2O. Model sensitivity tests showed that emissions were spatially and seasonably variable and especially sensitive to soil bulk density and carbon content. Meeting future demand for maize using current soybean area in MT might require either (a) intensifying 3.0 million ha of existing single soybean to soybean-maize or (b) increasing N fertilization to ~180 kg N ha−1 on existing 2.3 million ha of soybean-maize area. The latter strategy would release ~35% more N2O than the first. Our modifications of the DNDC model will improve estimates of N2O emissions from agricultural production in MT and other tropical areas, but narrowing model uncertainty will depend on more detailed field measurements and spatial data on soil and cropping management.
-
ArticleEffects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazil(Elsevier, 2015-06-19) Pinto Dias, Livia Cristina ; Macedo, Marcia N. ; Costa, Marcos Heil ; Coe, Michael T. ; Neill, ChristopherThis study assessed the influence of land cover changes on evapotranspiration and streamflow in small catchments in the Upper Xingu River Basin (Mato Grosso state, Brazil). Streamflow was measured in catchments with uniform land use for September 1, 2008 to August 31, 2010. We used models to simulate evapotranspiration and streamflow for the four most common land cover types found in the Upper Xingu: tropical forest, cerrado (savanna), pasture, and soybean croplands. We used INLAND to perform single point simulations considering tropical rainforest, cerrado and pasturelands, and AgroIBIS for croplands. Converting natural vegetation to agriculture substantially modifies evapotranspiration and streamflow in small catchments. Measured mean streamflow in soy catchments was about three times greater than that of forest catchments, while the mean annual amplitude of flow in soy catchments was more than twice that of forest catchments. Simulated mean annual evapotranspiration was 39% lower in agricultural ecosystems (pasture and soybean cropland) than in natural ecosystems (tropical rainforest and cerrado). Observed and simulated mean annual streamflows in agricultural ecosystems were more than 100% higher than in natural ecosystems. The accuracy of the simulations was improved by using field-measured soil hydraulic properties. The inclusion of local measurements of key soil parameters is likely to improve hydrological simulations in other tropical regions.
-
ArticleSurprisingly modest water quality impacts from expansion and intensification of large-scale commercial agriculture in the Brazilian Amazon-Cerrado region(Sage, 2017-08-30) Neill, Christopher ; Jankowski, KathiJo ; Brando, Paulo ; Coe, Michael T. ; Deegan, Linda A. ; Macedo, Marcia N. ; Riskin, Shelby H. ; Porder, Stephen ; Elsenbeer, Helmut ; Krusche, Alex V.Large-scale commercial cropping of soybeans expanded in the tropical Amazon and Cerrado biomes of Brazil after 1990. More recently, cropping intensified from single-cropping of soybeans to double-cropping of soybeans with corn or cotton. Cropland expansion and intensification, and the accompanying use of mineral fertilizers, raise concerns about whether nutrient runoff and impacts to surface waters will be similar to those experienced in commercial cropland regions at temperate latitudes. We quantified water infiltration through soils, water yield, and streamwater chemistry in watersheds draining native tropical forest and single- and double-cropped areas on the level, deep, highly weathered soils where cropland expansion and intensification typically occurs. Although water yield increased four-fold from croplands, streamwater chemistry remained largely unchanged. Soil characteristics exerted important control over the movement of nitrogen (N) and phosphorus (P) into streams. High soil infiltration rates prevented surface erosion and movement of particulate P, while P fixation in surface soils restricted P movement to deeper soil layers. Nitrogen retention in deep soils, likely by anion exchange, also appeared to limit N leaching and export in streamwater from both single- and double-cropped watersheds that received nitrogen fertilizer. These mechanisms led to lower streamwater P and N concentrations and lower watershed N and P export than would be expected, based on studies from temperate croplands with similar cropping and fertilizer application practices.
-
ArticleDeep soils modify environmental consequences of increased nitrogen fertilizer use in intensifying Amazon agriculture(Nature Publishing Group, 2018-09-07) Jankowski, KathiJo ; Neill, Christopher ; Davidson, Eric A. ; Macedo, Marcia N. ; Costa, Ciniro ; Galford, Gillian L. ; Maracahipes Santos, Leonardo ; LeFebvre, Paul ; Nunes, Darlisson ; Cerri, Carlos E. P. ; McHorney, Richard ; O’Connell, Christine ; Coe, Michael T.Agricultural intensification offers potential to grow more food while reducing the conversion of native ecosystems to croplands. However, intensification also risks environmental degradation through emissions of the greenhouse gas nitrous oxide (N2O) and nitrate leaching to ground and surface waters. Intensively-managed croplands and nitrogen (N) fertilizer use are expanding rapidly in tropical regions. We quantified fertilizer responses of maize yield, N2O emissions, and N leaching in an Amazon soybean-maize double-cropping system on deep, highly-weathered soils in Mato Grosso, Brazil. Application of N fertilizer above 80 kg N ha−1 yr−1 increased maize yield and N2O emissions only slightly. Unlike experiences in temperate regions, leached nitrate accumulated in deep soils with increased fertilizer and conversion to cropping at N fertilization rates >80 kg N ha−1, which exceeded maize demand. This raises new questions about the capacity of tropical agricultural soils to store nitrogen, which may determine when and how much nitrogen impacts surface waters.