Elsenbeer Helmut

No Thumbnail Available
Last Name
Elsenbeer
First Name
Helmut
ORCID

Search Results

Now showing 1 - 6 of 6
  • Preprint
    Runoff sources and land cover change in the Amazon : an end-member mixing analysis from small watersheds
    ( 2011-03) Neill, Christopher ; Chaves, Joaquin E. ; Biggs, Trent ; Deegan, Linda A. ; Elsenbeer, Helmut ; Figueiredo, Ricardo O. ; Germer, Sonja ; Johnson, Mark S. ; Lehmann, Johannes ; Markewitz, Daniel ; Piccolo, Marisa C.
    The flowpaths by which water moves from watersheds to streams has important consequences for the runoff dynamics and biogeochemistry of surface waters in the Amazon Basin. The clearing of Amazon forest to cattle pasture has the potential to change runoff sources to streams by shifting runoff to more surficial flow pathways. We applied end member mixing analysis (EMMA) to ten small watersheds throughout the Amazon in which solute composition of streamwater and groundwater, overland flow, soil solution, throughfall and rainwater were measured, largely as part of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia. We found a range in the extent to which streamwater samples fell within the mixing space determined by potential flowpath end members, suggesting that some water sources to streams were not sampled. The contribution of overland flow as a source of stream flow was greater in pasture watersheds than in forest watersheds of comparable size. Increases in overland flow contribution to pasture streams ranged in some cases from 0% in forest to 27 to 28% in pasture and were broadly consistent with results from hydrometric sampling of Amazon forest and pasture watersheds that indicate 17- to 18-fold increase in the overland flow contribution to stream flow in pastures. In forest, overland flow was an important contribution to stream flow (45 to 57%) in ephemeral streams where flows were dominated by stormflow. Overland flow contribution to stream flow decreased in importance with increasing watershed area, from 21 to 57% in forest and 60 to 89% in pasture watersheds <10 ha to 0% in forest and 27 to 28% in pastures in watersheds >100 ha. Soil solution contributions to stream flow were similar across watershed area and groundwater inputs generally increased in proportion to decreases in overland flow. Application of EMMA across multiple watersheds indicated patterns across gradients of stream size and land cover that were consistent with patterns determined by detailed hydrometric sampling.
  • Preprint
    Conversion to soy on the Amazonian agricultural frontier increases streamflow without affecting stormflow dynamics
    ( 2011-01) Hayhoe, Shelby J. ; Neill, Christopher ; Porder, Stephen ; McHorney, Richard ; LeFebvre, Paul ; Coe, Michael T. ; Elsenbeer, Helmut ; Krusche, Alex V.
    Large-scale soy agriculture in the southern Brazilian Amazon now rivals deforestation for pasture as the region’s predominant form of land use change. Such landscape level change can have substantial consequences for local and regional hydrology, which remain relatively unstudied. We examined how the conversion to soy agriculture influences water balances and stormflows using stream discharge (water yields) and the timing of discharge (stream hydrographs) in small (2.5 to 13.5 km2) forested and soy headwater watersheds in the Upper Xingu Watershed in the state of Mato Grosso, Brazil. We monitored water yield for one year in three forested and four soy watersheds. Mean daily water yields were approximately four times higher in soy than forested watersheds, and soy watersheds showed greater seasonal variability in discharge. The contribution of stormflows to annual streamflow in all streams was low (< 13% of annual streamflow), and the contribution of stormflow to streamflow did not differ between land uses. If the increases in water yield observed in this study are typical, landscape-scale conversion to soy substantially alters water-balance, potentially altering the regional hydrology over large areas of the southern Amazon.
  • Article
    Surprisingly modest water quality impacts from expansion and intensification of large-scale commercial agriculture in the Brazilian Amazon-Cerrado region
    (Sage, 2017-08-30) Neill, Christopher ; Jankowski, KathiJo ; Brando, Paulo ; Coe, Michael T. ; Deegan, Linda A. ; Macedo, Marcia N. ; Riskin, Shelby H. ; Porder, Stephen ; Elsenbeer, Helmut ; Krusche, Alex V.
    Large-scale commercial cropping of soybeans expanded in the tropical Amazon and Cerrado biomes of Brazil after 1990. More recently, cropping intensified from single-cropping of soybeans to double-cropping of soybeans with corn or cotton. Cropland expansion and intensification, and the accompanying use of mineral fertilizers, raise concerns about whether nutrient runoff and impacts to surface waters will be similar to those experienced in commercial cropland regions at temperate latitudes. We quantified water infiltration through soils, water yield, and streamwater chemistry in watersheds draining native tropical forest and single- and double-cropped areas on the level, deep, highly weathered soils where cropland expansion and intensification typically occurs. Although water yield increased four-fold from croplands, streamwater chemistry remained largely unchanged. Soil characteristics exerted important control over the movement of nitrogen (N) and phosphorus (P) into streams. High soil infiltration rates prevented surface erosion and movement of particulate P, while P fixation in surface soils restricted P movement to deeper soil layers. Nitrogen retention in deep soils, likely by anion exchange, also appeared to limit N leaching and export in streamwater from both single- and double-cropped watersheds that received nitrogen fertilizer. These mechanisms led to lower streamwater P and N concentrations and lower watershed N and P export than would be expected, based on studies from temperate croplands with similar cropping and fertilizer application practices.
  • Preprint
    Differences in throughfall and net precipitation between soybean and transitional tropical forest in the southern Amazon, Brazil
    ( 2012-06) Base, Frank ; Elsenbeer, Helmut ; Neill, Christopher ; Krusche, Alex V.
    The expansion of soybean cultivation into the Amazon in Brazil has potential hydrological effects at local to regional scales. To determine the impacts of soybean agriculture on hydrology, a comparison of net precipitation (throughfall, stemflow) in undisturbed tropical forest and soybean fields on the southern edge of the Amazon Basin in the state of Mato Grosso is needed This study measured throughfall with troughs and stemflow with collar collectors during two rainy seasons. The results showed that in forest 91.6% of rainfall was collected as throughfall and 0.3% as stemflow, while in soybean fields with two-month old plants, 46.2% of rainfall was collected as throughfall and 9.0% as stemflow. Hence, interception of precipitation in soybean fields was far greater than in intact forests. Differences in throughfall, stemflow and net precipitation were found to be mainly associated with differences in plant structure and stem density in transitional forest and soybean cropland. Because rainfall interception in soybean fields is higher than previously believed and because both the area of cropland and the frequency of crop cycles (double cropping) are increasing rapidly, interception needs to be reconsidered in regional water balance models when consequences of land cover changes are analyzed in the Amazon soybean frontier region. Based on the continued expansion of soybean fields across the landscape and the finding that net precipitation is lower in soy agriculture, a reduction in water availability in the long term can be assumed.
  • Preprint
    Soil hydraulic response to land-use change associated with the recent soybean expansion at the Amazon agricultural frontier
    ( 2011-08) Scheffler, Raphael ; Neill, Christopher ; Krusche, Alex V. ; Elsenbeer, Helmut
    Clearing for large-scale soy production and the displacement of cattle-breeding by soybeans are major features of land-use change in the lowland Amazon that can alter hydrologic properties of soils and the runoff generation over large areas. We measured infiltrability and saturated hydraulic conductivity (Ksat) under natural forest, pasture, and soybeans on Oxisols in a region of rapid soybean expansion in Mato Grosso, Brazil. The forest-pasture conversion reduced infiltrability from 1258 to 100 mm/h and Ksat at all depths. The pasture-soy conversion increased infiltrability from 100 to 469 mm/h (attributed to shallow disking), did not affect Ksat at 12.5 cm, but decreased Ksat at 30 cm from 122 to 80 mm/h, suggesting that soybean cultivation enhances subsoil compaction. Permeability decreased markedly with depth under forest, did not change under pasture, and averaged out at one fourth the forest value under soybeans with a similar pattern of anisotropy. Comparisons of permeability with rainfall intensities indicated that land-use change did not alter the predominantly vertical water movement within the soil. We conclude that this landscape is well buffered against land-use changes regarding near-surface hydrology, even though short-lived ponding and perched water tables may occur locally during high-intensity rainfall on pastures and under soybeans.
  • Article
    Solute and sediment export from Amazon forest and soybean headwater streams
    (John Wiley & Sons, 2017-01-04) Riskin, Shelby H. ; Neill, Christopher ; Jankowski, KathiJo ; Krusche, Alex V. ; McHorney, Richard ; Elsenbeer, Helmut ; Macedo, Marcia N. ; Nunes, Darlisson ; Porder, Stephen
    Intensive cropland agriculture commonly increases streamwater solute concentrations and export from small watersheds. In recent decades, the lowland tropics have become the world's largest and most important region of cropland expansion. Although the effects of intensive cropland agriculture on streamwater chemistry and watershed export have been widely studied in temperate regions, their effects in tropical regions are poorly understood. We sampled seven headwater streams draining watersheds in forest (n = 3) or soybeans (n = 4) to examine the effects of soybean cropping on stream solute concentrations and watershed export in a region of rapid soybean expansion in the Brazilian state of Mato Grosso. We measured stream flows and concentrations of NO3−, PO43−, SO42−, Cl−, NH4+, Ca2+, Mg2+, Na+, K+, Al3+, Fe3+, and dissolved organic carbon (DOC) biweekly to monthly to determine solute export. We also measured stormflows and stormflow solute concentrations in a subset of watersheds (two forest, two soybean) during two/three storms, and solutes and δ18O in groundwater, rainwater, and throughfall to characterize watershed flowpaths. Concentrations of all solutes except K+ varied seasonally in streamwater, but only Fe3+ concentrations differed between land uses. The highest streamwater and rainwater solute concentrations occurred during the peak season of wildfires in Mato Grosso, suggesting that regional changes in atmospheric composition and deposition influence seasonal stream solute concentrations. Despite no concentration differences between forest and soybean land uses, annual export of NH4+, PO43−, Ca2+, Fe3+, Na+, SO42−, DOC, and TSS were significantly higher from soybean than forest watersheds (5.6-fold mean increase). This increase largely reflected a 4.3-fold increase in water export from soybean watersheds. Despite this increase, total solute export per unit watershed area (i.e., yield) remained low for all watersheds (<1 kg NO3− N·ha−1·yr−1, <2.1 kg NH4+-N·ha−1·yr−1, <0.2 kg PO43−-P·ha−1·yr−1, <1.5 kg Ca2+·ha−1·yr−1). Responses of both streamflows and solute concentrations to crop agriculture appear to be controlled by high soil hydraulic conductivity, groundwater-dominated hydrologic flowpaths on deep soils, and the absence of nitrogen fertilization. To date, these factors have buffered streams from the large increases in solute concentrations that often accompany intensive croplands in other locations.