Steele
Michael
Steele
Michael
No Thumbnail Available
14 results
Search Results
Now showing
1 - 14 of 14
-
ArticleChanges in the arctic ocean carbon cycle with diminishing ice cover(American Geophysical Union, 2020-05-24) DeGrandpre, Michael D. ; Evans, Wiley ; Timmermans, Mary-Louise ; Krishfield, Richard A. ; Williams, William J. ; Steele, MichaelLess than three decades ago only a small fraction of the Arctic Ocean (AO) was ice free and then only for short periods. The ice cover kept sea surface pCO2 at levels lower relative to other ocean basins that have been exposed year round to ever increasing atmospheric levels. In this study, we evaluate sea surface pCO2 measurements collected over a 6‐year period along a fixed cruise track in the Canada Basin. The measurements show that mean pCO2 levels are significantly higher during low ice years. The pCO2 increase is likely driven by ocean surface heating and uptake of atmospheric CO2 with large interannual variability in the contributions of these processes. These findings suggest that increased ice‐free periods will further increase sea surface pCO2, reducing the Canada Basin's current role as a net sink of atmospheric CO2.
-
ArticleCirculation of Pacific Winter Water in the western Arctic Ocean(American Geophysical Union, 2019-01-16) Zhong, Wenli ; Steele, Michael ; Zhang, Jinlun ; Cole, Sylvia T.Pacific Winter Water (PWW) enters the western Arctic Ocean from the Chukchi Sea; however, the physical mechanisms that regulate its circulation within the deep basin are still not clear. Here, we investigate the interannual variability of PWW with a comprehensive data set over a decade. We quantify the thickening and expansion of the PWW layer during 2002–2016, as well as its changing pathway. The total volume of PWW in the Beaufort Gyre (BG) region is estimated to have increased from 3.48 ± 0.04 × 1014 m3 during 2002–2006 to 4.11 ± 0.02 × 1014 m3 during 2011–2016, an increase of 18%. We find that the deepening rate of the lower bound of PWW is almost double that of its upper bound in the northern Canada Basin, a result of lateral flux convergence of PWW (via lateral advection of PWW from the Chukchi Borderland) in addition to the Ekman pumping. In particular, of the 70‐m deepening of PWW at its lower bound observed over 2003–2011 in the northwestern basin, 43% resulted from lateral flux convergence. We also find a redistribution of PWW in recent years toward the Chukchi Borderland associated with the wind‐driven spin‐up and westward shift of the BG. Finally, we hypothesize that a recently observed increase of lower halocline eddies in the BG might be explained by this redistribution, through a compression mechanism over the Chukchi Borderland.
-
ArticleModeling the impact of declining sea ice on the Arctic marine planktonic ecosystem(American Geophysical Union, 2010-10-08) Zhang, Jinlun ; Spitz, Yvette H. ; Steele, Michael ; Ashjian, Carin J. ; Campbell, Robert G. ; Berline, Leo ; Matrai, PatriciaWe have developed a coupled 3-D pan-Arctic biology/sea ice/ocean model to investigate the impact of declining Arctic sea ice on the marine planktonic ecosystem over 1988–2007. The biophysical model results agree with satellite observations of a generally downward trend in summer sea ice extent during 1988–2007, resulting in an increase in the simulated photosynthetically active radiation (PAR) at the ocean surface and marine primary productivity (PP) in the upper 100 m over open water areas of the Arctic Ocean. The simulated Arctic sea ice thickness has decreased steadily during 1988–2007, leading to an increase in PAR and PP in sea ice-covered areas. The simulated total PAR in all areas of the Arctic Ocean has increased by 43%, from 146 TW in 1988 to 209 TW in 2007; the corresponding total PP has increased by 50%, from 456 Tg C yr−1 in 1988 to 682 Tg C yr−1 in 2007. The simulated PAR and PP increases mainly occur in the seasonally and permanently ice-covered Arctic Ocean. In addition to increasing PAR, the decline in sea ice tends to increase the nutrient availability in the euphotic zone by enhancing air-sea momentum transfer, leading to strengthened upwelling and mixing in the water column and therefore increased nutrient input into the upper ocean layers from below. The increasing nutrient availability also contributes to the increase in the simulated PP, even though significant surface nutrient drawdown in summer is simulated. In conjunction with increasing surface absorption of solar radiation and rising surface air temperature, the increasing surface water temperature in the Arctic Ocean peripheral seas further contributes to the increase in PP. As PP has increased, so has the simulated biomass of phytoplankton and zooplankton.
-
ArticleRecent advances in Arctic ocean studies employing models from the Arctic Ocean Model Intercomparison Project(Oceanography Society, 2011-09) Proshutinsky, Andrey ; Aksenov, Yevgeny ; Kinney, Jaclyn Clement ; Gerdes, Rudiger ; Golubeva, Elena ; Holland, David ; Holloway, Greg ; Jahn, Alexandra ; Johnson, Mark ; Popova, Ekaterina E. ; Steele, Michael ; Watanabe, EijiObservational data show that the Arctic Ocean has significantly and rapidly changed over the last few decades, which is unprecedented in the observational record. Air and water temperatures have increased, sea ice volume and extent have decreased, permafrost has thawed, storminess has increased, sea level has risen, coastal erosion has progressed, and biological processes have become more complex and diverse. In addition, there are socio-economic impacts of Arctic environmental change on Arctic residents and the world, associated with tourism, oil and gas exploration, navigation, military operations, trade, and industry. This paper discusses important results of the Arctic Ocean Model Intercomparison Project, which is advancing the role of numerical modeling in Arctic Ocean and sea ice research by stimulating national and international synergies for high-latitude research.
-
ArticleThe great 2012 Arctic Ocean summer cyclone enhanced biological productivity on the shelves(John Wiley & Sons, 2014-01-16) Zhang, Jinlun ; Ashjian, Carin J. ; Campbell, Robert G. ; Hill, Victoria ; Spitz, Yvette H. ; Steele, MichaelA coupled biophysical model is used to examine the impact of the great Arctic cyclone of early August 2012 on the marine planktonic ecosystem in the Pacific sector of the Arctic Ocean (PSA). Model results indicate that the cyclone influences the marine planktonic ecosystem by enhancing productivity on the shelves of the Chukchi, East Siberian, and Laptev seas during the storm. Although the cyclone's passage in the PSA lasted only a few days, the simulated biological effects on the shelves last 1 month or longer. At some locations on the shelves, primary productivity (PP) increases by up to 90% and phytoplankton biomass by up to 40% in the wake of the cyclone. The increase in zooplankton biomass is up to 18% on 31 August and remains 10% on 15 September, more than 1 month after the storm. In the central PSA, however, model simulations indicate a decrease in PP and plankton biomass. The biological gain on the shelves and loss in the central PSA are linked to two factors. (1) The cyclone enhances mixing in the upper ocean, which increases nutrient availability in the surface waters of the shelves; enhanced mixing in the central PSA does not increase productivity because nutrients there are mostly depleted through summer draw down by the time of the cyclone's passage. (2) The cyclone also induces divergence, resulting from the cyclone's low-pressure system that drives cyclonic sea ice and upper ocean circulation, which transports more plankton biomass onto the shelves from the central PSA. The simulated biological gain on the shelves is greater than the loss in the central PSA, and therefore, the production on average over the entire PSA is increased by the cyclone. Because the gain on the shelves is offset by the loss in the central PSA, the average increase over the entire PSA is moderate and lasts only about 10 days. The generally positive impact of cyclones on the marine ecosystem in the Arctic, particularly on the shelves, is likely to grow with increasing summer cyclone activity if the Arctic continues to warm and the ice cover continues to shrink.
-
ArticleThe influence of sea ice and snow cover and nutrient availability on the formation of massive under-ice phytoplankton blooms in the Chukchi Sea(Elsevier, 2015-03-09) Zhang, Jinlun ; Ashjian, Carin J. ; Campbell, Robert G. ; Spitz, Yvette H. ; Steele, Michael ; Hill, VictoriaA coupled biophysical model is used to examine the impact of changes in sea ice and snow cover and nutrient availability on the formation of massive under-ice phytoplankton blooms (MUPBs) in the Chukchi Sea of the Arctic Ocean over the period 1988–2013. The model is able to reproduce the basic features of the ICESCAPE (Impacts of Climate on EcoSystems and Chemistry of the Arctic Pacific Environment) observed MUPB during July 2011. The simulated MUPBs occur every year during 1988–2013, mainly in between mid-June and mid-July. While the simulated under-ice blooms of moderate magnitude are widespread in the Chukchi Sea, MUPBs are less so. On average, the area fraction of MUPBs in the ice-covered areas of the Chukchi Sea during June and July is about 8%, which has been increasing at a rate of 2% yr–1 over 1988–2013. The simulated increase in the area fraction as well as primary productivity and chlorophyll a biomass is linked to an increase in light availability, in response to a decrease in sea ice and snow cover, and an increase in nutrient availability in the upper 100 m of the ocean, in conjunction with an intensification of ocean circulation. Simulated MUPBs are temporally sporadic and spatially patchy because of strong spatiotemporal variations of light and nutrient availability. However, as observed during ICESCAPE, there is a high likelihood that MUPBs may form at the shelf break, where the model simulates enhanced nutrient concentration that is seldom depleted between mid-June and mid-July because of generally robust shelf-break upwelling and other dynamic ocean processes. The occurrence of MUPBs at the shelf break is more frequent in the past decade than in the earlier period because of elevated light availability there. It may be even more frequent in the future if the sea ice and snow cover continues to decline such that light is more available at the shelf break to further boost the formation of MUPBs there.
-
ArticleBiophysical consequences of a relaxing Beaufort Gyre(American Geophysical Union, 2019-12-19) Zhang, Jinlun ; Spitz, Yvette H. ; Steele, Michael ; Ashjian, Carin J. ; Campbell, Robert G. ; Schweiger, AxelA biophysical model shows that Beaufort Gyre (BG) intensification in 2004–2016 is followed by relaxation in 2017–2018, based on a BG variability index. BG intensification leads to enhanced downwelling in the central Canada Basin (CCB) and upwelling along the coast. In the CCB, enhanced downwelling reduces nutrients, thus lowering primary productivity (PP) and plankton biomass. Enhanced upwelling along the coast and in parts of the Chukchi shelf/slope increases nutrients, leading to elevated PP/biomass in the Pacific Arctic Ocean (PAO) outside of the CCB. The overall PAO PP/biomass is dominated by the shelf/slope response and thus increases during BG intensification. As the BG relaxes in 2017–2018, these processes largely reverse, with increasing PP/biomass in the CCB and decreasing PP/biomass in most of the shelf/slope regions. Because the shelf/slope regions are much more productive than the CCB, BG relaxation has the tendency to reduce the overall production in the PAO.
-
ArticleArctic Ocean warming contributes to reduced polar ice cap(American Meteorological Society, 2010-12) Polyakov, Igor V. ; Timokhov, Leonid A. ; Alexeev, Vladimir A. ; Bacon, Sheldon ; Dmitrenko, Igor A. ; Fortier, Louis ; Frolov, Ivan E. ; Gascard, Jean-Claude ; Hansen, Edmond ; Ivanov, Vladimir V. ; Laxon, Seymour W. ; Mauritzen, Cecilie ; Perovich, Donald K. ; Shimada, Koji ; Simmons, Harper L. ; Sokolov, Vladimir T. ; Steele, Michael ; Toole, John M.Analysis of modern and historical observations demonstrates that the temperature of the intermediate-depth (150–900 m) Atlantic water (AW) of the Arctic Ocean has increased in recent decades. The AW warming has been uneven in time; a local 1°C maximum was observed in the mid-1990s, followed by an intervening minimum and an additional warming that culminated in 2007 with temperatures higher than in the 1990s by 0.24°C. Relative to climatology from all data prior to 1999, the most extreme 2007 temperature anomalies of up to 1°C and higher were observed in the Eurasian and Makarov Basins. The AW warming was associated with a substantial (up to 75–90 m) shoaling of the upper AW boundary in the central Arctic Ocean and weakening of the Eurasian Basin upper-ocean stratification. Taken together, these observations suggest that the changes in the Eurasian Basin facilitated greater upward transfer of AW heat to the ocean surface layer. Available limited observations and results from a 1D ocean column model support this surmised upward spread of AW heat through the Eurasian Basin halocline. Experiments with a 3D coupled ice–ocean model in turn suggest a loss of 28–35 cm of ice thickness after 50 yr in response to the 0.5 W m−2 increase in AW ocean heat flux suggested by the 1D model. This amount of thinning is comparable to the 29 cm of ice thickness loss due to local atmospheric thermodynamic forcing estimated from observations of fast-ice thickness decline. The implication is that AW warming helped precondition the polar ice cap for the extreme ice loss observed in recent years.
-
ArticleIncreasing winter ocean-to-ice heat flux in the Beaufort Gyre region, Arctic Ocean over 2006-2018(American Geophysical Union, 2022-01-18) Zhong, Wenli ; Cole, Sylvia T. ; Zhang, Jinlun ; Lei, Ruibo ; Steele, MichaelOcean-to-ice heat flux (OHF) is important in regulating the variability of sea ice mass balance. Using surface drifting buoy observations, we show that during winter in the Arctic Ocean's Beaufort Gyre region, OHF increased from 0.76 ± 0.05 W/m2 over 2006–2012 to 1.63 ± 0.08 W/m2 over 2013–2018. We find that this is a result of thinner and less-compact sea ice that promotes enhanced winter ice growth, stronger ocean vertical convection, and subsurface heat entrainment. In contrast, Ekman upwelling declined over the study period, suggesting it had a secondary contribution to OHF changes. The enhanced ice growth creates a cooler, saltier, and deeper ocean surface mixed layer. In addition, the enhanced vertical temperature gradient near the mixed layer base in later years favors stronger entrainment of subsurface heat. OHF and its increase during 2006–2018 were not geographically uniform, with hot spots found in an upwelling region where ice was most seasonally variable.
-
ArticleThe Arctic freshwater system : changes and impacts(American Geophysical Union, 2007-11-20) White, Daniel ; Hinzman, Larry ; Alessa, Lilian ; Cassano, John ; Chambers, Molly ; Falkner, Kelly ; Francis, Jennifer ; Gutowski, William J. ; Holland, Marika M. ; Holmes, Robert M. ; Huntington, Henry ; Kane, Douglas ; Kliskey, Andrew ; Lee, Craig M. ; McClelland, James W. ; Peterson, Bruce J. ; Rupp, T. Scott ; Straneo, Fiamma ; Steele, Michael ; Woodgate, Rebecca ; Yang, Daqing ; Yoshikawa, Kenji ; Zhang, TingjunDramatic changes have been observed in the Arctic over the last century. Many of these involve the storage and cycling of fresh water. On land, precipitation and river discharge, lake abundance and size, glacier area and volume, soil moisture, and a variety of permafrost characteristics have changed. In the ocean, sea ice thickness and areal coverage have decreased and water mass circulation patterns have shifted, changing freshwater pathways and sea ice cover dynamics. Precipitation onto the ocean surface has also changed. Such changes are expected to continue, and perhaps accelerate, in the coming century, enhanced by complex feedbacks between the oceanic, atmospheric, and terrestrial freshwater systems. Change to the arctic freshwater system heralds changes for our global physical and ecological environment as well as human activities in the Arctic. In this paper we review observed changes in the arctic freshwater system over the last century in terrestrial, atmospheric, and oceanic systems.
-
ArticleRapid change in freshwater content of the Arctic Ocean(American Geophysical Union, 2009-05-21) McPhee, M. G. ; Proshutinsky, Andrey ; Morison, James H. ; Steele, Michael ; Alkire, MatthewThe dramatic reduction in minimum Arctic sea ice extent in recent years has been accompanied by surprising changes in the thermohaline structure of the Arctic Ocean, with potentially important impact on convection in the North Atlantic and the meridional overturning circulation of the world ocean. Extensive aerial hydrographic surveys carried out in March–April, 2008, indicate major shifts in the amount and distribution of fresh-water content (FWC) when compared with winter climatological values, including substantial freshening on the Pacific side of the Lomonosov Ridge. Measurements in the Canada and Makarov Basins suggest that total FWC there has increased by as much as 8,500 cubic kilometers in the area surveyed, effecting significant changes in the sea-surface dynamic topography, with an increase of about 75% in steric level difference from the Canada to Eurasian Basins, and a major shift in both surface geostrophic currents and freshwater transport in the Beaufort Gyre.
-
ArticleForum for Arctic Modeling and Observational Synthesis (FAMOS) : past, current, and future activities(John Wiley & Sons, 2016-06-03) Proshutinsky, Andrey ; Steele, Michael ; Timmermans, Mary-LouiseThe overall goal of the Forum for Arctic Modeling and Observational Synthesis (FAMOS) community activities reported in this special issue is to enhance understanding of processes and mechanisms driving Arctic Ocean marine and sea ice changes, and the consequences of those changes especially in biogeochemical and ecosystem studies. Major 2013–2015 FAMOS accomplishments to date are: identification of consistent errors across Arctic regional models; approaches to reduce these errors, and recommendations for the most effective coupled sea ice-ocean models for use in fully coupled regional and global climate models. 2013–2015 FAMOS coordinated analyses include many process studies, using models together with observations to investigate: dynamics and mechanisms responsible for drift, deformation and thermodynamics of sea ice; pathways and mechanisms driving variability of the Atlantic, Pacific and river waters in the Arctic Ocean; processes of freshwater accumulation and release in the Beaufort Gyre; the fate of melt water from Greenland; characteristics of ocean eddies; biogeochemistry and ecosystem processes and change, climate variability, and predictability. Future FAMOS collaborations will focus on employing models and conducting observations at high and very high spatial and temporal resolution to investigate the role of subgrid-scale processes in regional Arctic Ocean and coupled ice-ocean and atmosphere-ice-ocean models.
-
ArticleMelt pond conditions on declining arctic sea ice over 1979-2016: Model development, validation, and results(American Geophysical Union, 2018-10-18) Zhang, Jinlun ; Schweiger, Axel ; Webster, Melinda ; Light, Bonnie ; Steele, Michael ; Ashjian, Carin J. ; Campbell, Robert ; Spitz, Yvette H.A melt pond (MP) distribution equation has been developed and incorporated into the Marginal Ice‐Zone Modeling and Assimilation System to simulate Arctic MPs and sea ice over 1979–2016. The equation differs from previous MP models and yet benefits from previous studies for MP parameterizations as well as a range of observations for model calibration. Model results show higher magnitude of MP volume per unit ice area and area fraction in most of the Canada Basin and the East Siberian Sea and lower magnitude in the central Arctic. This is consistent with Moderate Resolution Imaging Spectroradiometer observations, evaluated with Measurements of Earth Data for Environmental Analysis (MEDEA) data, and closely related to top ice melt per unit ice area. The model simulates a decrease in the total Arctic sea ice volume and area, owing to a strong increase in bottom and lateral ice melt. The sea ice decline leads to a strong decrease in the total MP volume and area. However, the Arctic‐averaged MP volume per unit ice area and area fraction show weak, statistically insignificant downward trends, which is linked to the fact that MP water drainage per unit ice area is increasing. It is also linked to the fact that MP volume and area decrease relatively faster than ice area. This suggests that overall the actual MP conditions on ice have changed little in the past decades as the ice cover is retreating in response to Arctic warming, thus consistent with the Moderate Resolution Imaging Spectroradiometer observations that show no clear trend in MP area fraction over 2000–2011.
-
ArticleDiffusive vertical heat flux in the Canada Basin of the Arctic Ocean inferred from moored instruments(John Wiley & Sons, 2014-01-22) Lique, Camille ; Guthrie, John D. ; Steele, Michael ; Proshutinsky, Andrey ; Morison, James H. ; Krishfield, Richard A.Observational studies have shown that an unprecedented warm anomaly has recently affected the temperature of the Atlantic Water (AW) layer lying at intermediate depth in the Arctic Ocean. Using observations from four profiling moorings, deployed in the interior of the Canada Basin between 2003 and 2011, the upward diffusive vertical heat flux from this layer is quantified. Vertical diffusivity is first estimated from a fine-scale parameterization method based on CTD and velocity profiles. Resulting diffusive vertical heat fluxes from the AW are in the range 0.1–0.2 W m−2 on average. Although large over the period considered, the variations of the AW temperature maximum yields small variations for the temperature gradient and thus the vertical diffusive heat flux. In most areas, variations in upward diffusive vertical heat flux from the AW have only a limited effect on temperature variations of the overlying layer. However, the presence of eddies might be an effective mechanism to enhance vertical heat transfer, although the small number of eddies sampled by the moorings suggest that this mechanism remains limited and intermittent in space and time. Finally, our results suggest that computing diffusive vertical heat flux with a constant vertical diffusivity of ∼2 × 10−6 m2 s−1 provides a reasonable estimate of the upward diffusive heat transfer from the AW layer, although this approximation breaks down in the presence of eddies.