Mark Welch David B.

No Thumbnail Available
Last Name
Mark Welch
First Name
David B.
ORCID

Search Results

Now showing 1 - 20 of 21
  • Article
    Nucleosome repositioning during differentiation of a human myeloid leukemia cell line
    (Taylor & Francis, 2017-02-23) Teif, Vladimir B. ; Mallm, Jan-Philipp ; Sharma, Tanvi ; Mark Welch, David B. ; Rippe, Karsten ; Eils, Roland ; Langowski, Jörg ; Olins, Ada L. ; Olins, Donald E.
    Cell differentiation is associated with changes in chromatin organization and gene expression. In this study, we examine chromatin structure following differentiation of the human myeloid leukemia cell line (HL-60/S4) into granulocytes with retinoic acid (RA) or into macrophage with phorbol ester (TPA). We performed ChIP-seq of histone H3 and its modifications, analyzing changes in nucleosome occupancy, nucleosome repeat length, eu-/heterochromatin redistribution and properties of epichromatin (surface chromatin adjacent to the nuclear envelope). Nucleosome positions changed genome-wide, exhibiting a specific class of alterations involving nucleosome loss in extended (»1kb) regions, pronounced in enhancers and promoters. Genes that lost nucleosomes at their promoters showed a tendency to be upregulated. On the other hand, nucleosome gain did not show simple effects on transcript levels. The average genome-wide nucleosome repeat length (NRL) did not change significantly with differentiation. However, we detected an approximate 10 bp NRL decrease around the haematopoietic transcription factor (TF) PU.1 and the architectural protein CTCF, suggesting an effect on NRL proximal to TF binding sites. Nucleosome occupancy changed in regions associated with active promoters in differentiated cells, compared with untreated HL-60/S4 cells. Epichromatin regions revealed an increased GC content and high nucleosome density compared with surrounding chromatin. Epichromatin showed depletion of major histone modifications and revealed enrichment with PML body-associated genes. In general, chromatin changes during HL-60/S4 differentiation appeared to be more localized to regulatory regions, compared with genome-wide changes among diverse cell types studied elsewhere.
  • Article
    Transcriptome data reveal syndermatan relationships and suggest the evolution of endoparasitism in Acanthocephala via an epizoic stage
    (Public Library of Science, 2014-02-10) Wey-Fabrizius, Alexandra R. ; Herlyn, Holger ; Rieger, Benjamin ; Rosenkranz, David ; Witek, Alexander ; Mark Welch, David B. ; Ebersberger, Ingo ; Hankeln, Thomas
    The taxon Syndermata comprises the biologically interesting wheel animals (“Rotifera”: Bdelloidea + Monogononta + Seisonidea) and thorny-headed worms (Acanthocephala), and is central for testing superordinate phylogenetic hypotheses (Platyzoa, Gnathifera) in the metazoan tree of life. Recent analyses of syndermatan phylogeny suggested paraphyly of Eurotatoria (free-living bdelloids and monogononts) with respect to endoparasitic acanthocephalans. Data of epizoic seisonids, however, were absent, which may have affected the branching order within the syndermatan clade. Moreover, the position of Seisonidea within Syndermata should help in understanding the evolution of acanthocephalan endoparasitism. Here, we report the first phylogenomic analysis that includes all four higher-ranked groups of Syndermata. The analyzed data sets comprise new transcriptome data for Seison spec. (Seisonidea), Brachionus manjavacas (Monogononta), Adineta vaga (Bdelloidea), and Paratenuisentis ambiguus (Acanthocephala). Maximum likelihood and Bayesian trees for a total of 19 metazoan species were reconstructed from up to 410 functionally diverse proteins. The results unanimously place Monogononta basally within Syndermata, and Bdelloidea appear as the sister group to a clade comprising epizoic Seisonidea and endoparasitic Acanthocephala. Our results support monophyly of Syndermata, Hemirotifera (Bdelloidea + Seisonidea + Acanthocephala), and Pararotatoria (Seisonidea + Acanthocephala), rejecting monophyly of traditional Rotifera and Eurotatoria. This serves as an indication that early acanthocephalans lived epizoically or as ectoparasites on arthropods, before their complex lifecycle with arthropod intermediate and vertebrate definite hosts evolved.
  • Article
    The mate recognition protein gene mediates reproductive isolation and speciation in the Brachionus plicatilis cryptic species complex
    (BioMed Central, 2012-08-01) Gribble, Kristin E. ; Mark Welch, David B.
    Chemically mediated prezygotic barriers to reproduction likely play an important role in speciation. In facultatively sexual monogonont rotifers from the Brachionus plicatilis cryptic species complex, mate recognition of females by males is mediated by the Mate Recognition Protein (MRP), a globular glycoprotein on the surface of females, encoded by the mmr-b gene family. In this study, we sequenced mmr-b copies from 27 isolates representing 11 phylotypes of the B. plicatilis species complex, examined the mode of evolution and selection of mmr-b, and determined the relationship between mmr-b genetic distance and mate recognition among isolates. Isolates of the B. plicatilis species complex have 1–4 copies of mmr-b, each composed of 2–9 nearly identical tandem repeats. The repeats within a gene copy are generally more similar than are gene copies among phylotypes, suggesting concerted evolution. Compared to housekeeping genes from the same isolates, mmr-b has accumulated only half as many synonymous differences but twice as many non-synonymous differences. Most of the amino acid differences between repeats appear to occur on the outer face of the protein, and these often result in changes in predicted patterns of phosphorylation. However, we found no evidence of positive selection driving these differences. Isolates with the most divergent copies were unable to mate with other isolates and rarely self-crossed. Overall the degree of mate recognition was significantly correlated with the genetic distance of mmr-b. Discrimination of compatible mates in the B. plicatilis species complex is determined by proteins encoded by closely related copies of a single gene, mmr-b. While concerted evolution of the tandem repeats in mmr-b may function to maintain identity, it can also lead to the rapid spread of a mutation through all copies in the genome and thus to reproductive isolation. The mmr-b gene is evolving rapidly, and novel alleles may be maintained and increase in frequency via asexual reproduction. Our analyses indicate that mate recognition, controlled by MMR-B, may drive reproductive isolation and allow saltational sympatric speciation within the B. plicatilis cryptic species complex, and that this process may be largely neutral.
  • Article
    Molecular characterization of Giardia intestinalis haplotypes in marine animals : variation and zoonotic potential
    (Inter-Research, 2008-08-19) Lasek-Nesselquist, Erica ; Bogomolni, Andrea L. ; Gast, Rebecca J. ; Mark Welch, David B. ; Ellis, Julie C. ; Sogin, Mitchell L. ; Moore, Michael J.
    Giardia intestinalis is a microbial eukaryotic parasite that causes diarrheal disease in humans and other vertebrates worldwide. The negative effect on quality of life and economics caused by G. intestinalis may be increased by its potential status as a zoonosis, or a disease that can be transmitted from animals to humans. The zoonotic potential of G. intestinalis has been implied for over 2 decades, with human-infecting genotypes (belonging to the 2 major subgroups, Assemblages A and B) occurring in wildlife and domesticated animals. There are recent reports of G. intestinalis in shellfish, seals, sea lions and whales, suggesting that marine animals are also potential reservoirs of human disease. However, the prevalence, genetic diversity and effect of G. intestinalis in marine environments and the role that marine animals play in transmission of this parasite to humans are relatively unexplored. Here, we provide the first thorough molecular characterization of G. intestinalis in marine vertebrates. Using a multi-locus sequencing approach, we identify human-infecting G. intestinalis haplotypes of both Assemblages A and B in the fecal material of dolphins, porpoises, seals, herring gulls Larus argentatus, common eiders Somateria mollissima and a thresher shark Alopias vulpinus. Our results indicate that G. intestinalis is prevalent in marine ecosystems, and a wide range of marine hosts capable of harboring zoonotic forms of this parasite exist. The presence of G. intestinalis in marine ecosystems raises concerns about how this disease might be transmitted among different host species.
  • Article
    Comparative transcriptome analysis of obligately asexual and cyclically sexual rotifers reveals genes with putative functions in sexual reproduction, dormancy, and asexual egg production
    (BioMed Central, 2013-06-19) Hanson, Sara J. ; Stelzer, Claus-Peter ; Mark Welch, David B. ; Logsdon, John M.
    Sexual reproduction is a widely studied biological process because it is critically important to the genetics, evolution, and ecology of eukaryotes. Despite decades of study on this topic, no comprehensive explanation has been accepted that explains the evolutionary forces underlying its prevalence and persistence in nature. Monogonont rotifers offer a useful system for experimental studies relating to the evolution of sexual reproduction due to their rapid reproductive rate and close relationship to the putatively ancient asexual bdelloid rotifers. However, little is known about the molecular underpinnings of sex in any rotifer species. We generated mRNA-seq libraries for obligate parthenogenetic (OP) and cyclical parthenogenetic (CP) strains of the monogonont rotifer, Brachionus calyciflorus, to identify genes specific to both modes of reproduction. Our differential expression analysis identified receptors with putative roles in signaling pathways responsible for the transition from asexual to sexual reproduction. Differential expression of a specific copy of the duplicated cell cycle regulatory gene CDC20 and specific copies of histone H2A suggest that such duplications may underlie the phenotypic plasticity required for reproductive mode switch in monogononts. We further identified differential expression of genes involved in the formation of resting eggs, a process linked exclusively to sex in this species. Finally, we identified transcripts from the bdelloid rotifer Adineta ricciae that have significant sequence similarity to genes with higher expression in CP strains of B. calyciflorus. Our analysis of global gene expression differences between facultatively sexual and exclusively asexual populations of B. calyciflorus provides insights into the molecular nature of sexual reproduction in rotifers. Furthermore, our results offer insight into the evolution of obligate asexuality in bdelloid rotifers and provide indicators important for the use of monogononts as a model system for investigating the evolution of sexual reproduction.
  • Preprint
    Global distribution and diversity of marine Verrucomicrobia
    ( 2011-12-08) Freitas, Sara ; Hatosy, Stephen ; Fuhrman, Jed A. ; Huse, Susan M. ; Mark Welch, David B. ; Sogin, Mitchell L. ; Martiny, Adam C.
    Verrucomicrobia is a bacterial phylum that is commonly detected in soil but little is known about the distribution and diversity of this phylum in the marine environment. To address this, we analyzed the marine microbial community composition in 506 samples from the International Census of Marine Microbes as well as eleven coastal samples taken from the California Current. These samples from both the water column and sediments covered a wide range of environmental conditions. Verrucomicrobia were present in 98% of the analyzed samples and thus appeared nearly ubiquitous in the ocean. Based on the occurrence of amplified 16S rRNA sequences, Verrucomicrobia constituted on average 2% of the water column and 1.4% of the sediment bacterial communities. The diversity of Verrucomicrobia displayed a biogeography at multiple taxonomic levels and thus, specific lineages appeared to have clear habitat preference. We found that Subdivision 1 and 4 generally dominated marine bacterial communities, whereas Subdivision 2 was confined to low salinity waters. Within the subdivisions, Verrucomicrobia community composition were significantly different in the water column compared to sediment as well as within the water column along gradients of salinity, temperature, nitrate, depth, and overall water column depth. Although we still know little about the ecophysiology of Verrucomicrobia lineages, the ubiquity of this phylum suggests that it may be important for the biogeochemical cycle of carbon in the ocean.
  • Article
    Accuracy and quality of massively parallel DNA pyrosequencing
    (BioMed Central, 2007-07-20) Huse, Susan M. ; Huber, Julie A. ; Morrison, Hilary G. ; Sogin, Mitchell L. ; Mark Welch, David B.
    Massively parallel pyrosequencing systems have increased the efficiency of DNA sequencing, although the published per-base accuracy of a Roche GS20 is only 96%. In genome projects, highly redundant consensus assemblies can compensate for sequencing errors. In contrast, studies of microbial diversity that catalogue differences between PCR amplicons of ribosomal RNA genes (rDNA) or other conserved gene families cannot take advantage of consensus assemblies to detect and minimize incorrect base calls. We performed an empirical study of the per-base error rate for the Roche GS20 system using sequences of the V6 hypervariable region from cloned microbial ribosomal DNA (tag sequencing). We calculated a 99.5% accuracy rate in unassembled sequences, and identified several factors that can be used to remove a small percentage of low-quality reads, improving the accuracy to 99.75% or better. By using objective criteria to eliminate low quality data, the quality of individual GS20 sequence reads in molecular ecological applications can surpass the accuracy of traditional capillary methods.
  • Article
    Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing
    (Public Library of Science, 2008-11-21) Huse, Susan M. ; Dethlefsen, Les ; Huber, Julie A. ; Mark Welch, David B. ; Relman, David A. ; Sogin, Mitchell L.
    Massively parallel pyrosequencing of hypervariable regions from small subunit ribosomal RNA (SSU rRNA) genes can sample a microbial community two or three orders of magnitude more deeply per dollar and per hour than capillary sequencing of full-length SSU rRNA. As with full-length rRNA surveys, each sequence read is a tag surrogate for a single microbe. However, rather than assigning taxonomy by creating gene trees de novo that include all experimental sequences and certain reference taxa, we compare the hypervariable region tags to an extensive database of rRNA sequences and assign taxonomy based on the best match in a Global Alignment for Sequence Taxonomy (GAST) process. The resulting taxonomic census provides information on both composition and diversity of the microbial community. To determine the effectiveness of using only hypervariable region tags for assessing microbial community membership, we compared the taxonomy assigned to the V3 and V6 hypervariable regions with the taxonomy assigned to full-length SSU rRNA sequences isolated from both the human gut and a deep-sea hydrothermal vent. The hypervariable region tags and full-length rRNA sequences provided equivalent taxonomy and measures of relative abundance of microbial communities, even for tags up to 15% divergent from their nearest reference match. The greater sampling depth per dollar afforded by massively parallel pyrosequencing reveals many more members of the “rare biosphere” than does capillary sequencing of the full-length gene. In addition, tag sequencing eliminates cloning bias and the sequences are short enough to be completely sequenced in a single read, maximizing the number of organisms sampled in a run while minimizing chimera formation. This technique allows the cost-effective exploration of changes in microbial community structure, including the rare biosphere, over space and time and can be applied immediately to initiatives, such as the Human Microbiome Project.
  • Preprint
    Molecular evolution of the membrane associated progesterone receptor in the Brachionus plicatilis (Rotifera, Monogononta) species complex
    ( 2010-10) Smith, Hilary A. ; Mark Welch, David B. ; Snell, Terry W.
    Many studies have investigated physiological roles of the membrane associated progesterone receptor (MAPR), but little is known of its evolution. Marked variations in response to exogenous progesterone have been reported for four brachionid rotifer species, suggesting differences in progesterone signaling and reception. Here we report sequence variation for the MAPR gene in the Brachionus plicatilis species complex. Phylogenetic analysis of this receptor is compared with relatedness based on cytochrome c oxidase subunit 1 sequences. Nonsynonymous to synonymous site substitution rate ratios, amino acid divergence, and variations in predicted phosphorylation sites are examined to assess evolution of the MAPR among brachionid clades.
  • Article
    VAMPS : a website for visualization and analysis of microbial population structures
    (BioMed Central, 2014-02-05) Huse, Susan M. ; Mark Welch, David B. ; Voorhis, Andy ; Shipunova, Anna ; Morrison, Hilary G. ; Eren, A. Murat ; Sogin, Mitchell L.
    The advent of next-generation DNA sequencing platforms has revolutionized molecular microbial ecology by making the detailed analysis of complex communities over time and space a tractable research pursuit for small research groups. However, the ability to generate 105–108 reads with relative ease brings with it many downstream complications. Beyond the computational resources and skills needed to process and analyze data, it is difficult to compare datasets in an intuitive and interactive manner that leads to hypothesis generation and testing. We developed the free web service VAMPS (Visualization and Analysis of Microbial Population Structures, http://vamps.mbl.edu webcite) to address these challenges and to facilitate research by individuals or collaborating groups working on projects with large-scale sequencing data. Users can upload marker gene sequences and associated metadata; reads are quality filtered and assigned to both taxonomic structures and to taxonomy-independent clusters. A simple point-and-click interface allows users to select for analysis any combination of their own or their collaborators’ private data and data from public projects, filter these by their choice of taxonomic and/or abundance criteria, and then explore these data using a wide range of analytic methods and visualizations. Each result is extensively hyperlinked to other analysis and visualization options, promoting data exploration and leading to a greater understanding of data relationships. VAMPS allows researchers using marker gene sequence data to analyze the diversity of microbial communities and the relationships between communities, to explore these analyses in an intuitive visual context, and to download data, results, and images for publication. VAMPS obviates the need for individual research groups to make the considerable investment in computational infrastructure and bioinformatic support otherwise necessary to process, analyze, and interpret massive amounts of next-generation sequence data. Any web-capable device can be used to upload, process, explore, and extract data and results from VAMPS. VAMPS encourages researchers to share sequence and metadata, and fosters collaboration between researchers of disparate biomes who recognize common patterns in shared data.
  • Article
    Transcriptomic assessment of resistance to effects of an aryl hydrocarbon receptor (AHR) agonist in embryos of Atlantic killifish (Fundulus heteroclitus) from a marine Superfund site
    (BioMed Central, 2011-05-24) Oleksiak, Marjorie F. ; Karchner, Sibel I. ; Jenny, Matthew J. ; Franks, Diana G. ; Mark Welch, David B. ; Hahn, Mark E.
    Populations of Atlantic killifish (Fundulus heteroclitus) have evolved resistance to the embryotoxic effects of polychlorinated biphenyls (PCBs) and other halogenated and nonhalogenated aromatic hydrocarbons that act through an aryl hydrocarbon receptor (AHR)-dependent signaling pathway. The resistance is accompanied by reduced sensitivity to induction of cytochrome P450 1A (CYP1A), a widely used biomarker of aromatic hydrocarbon exposure and effect, but whether the reduced sensitivity is specific to CYP1A or reflects a genome-wide reduction in responsiveness to all AHR-mediated changes in gene expression is unknown. We compared gene expression profiles and the response to 3,3',4,4',5-pentachlorobiphenyl (PCB-126) exposure in embryos (5 and 10 dpf) and larvae (15 dpf) from F. heteroclitus populations inhabiting the New Bedford Harbor, Massachusetts (NBH) Superfund site (PCB-resistant) and a reference site, Scorton Creek, Massachusetts (SC; PCB-sensitive). Analysis using a 7,000-gene cDNA array revealed striking differences in responsiveness to PCB-126 between the populations; the differences occur at all three stages examined. There was a sizeable set of PCB-responsive genes in the sensitive SC population, a much smaller set of PCB-responsive genes in NBH fish, and few similarities in PCB-responsive genes between the two populations. Most of the array results were confirmed, and additional PCB-regulated genes identified, by RNA-Seq (deep pyrosequencing). The results suggest that NBH fish possess a gene regulatory defect that is not specific to one target gene such as CYP1A but rather lies in a regulatory pathway that controls the transcriptional response of multiple genes to PCB exposure. The results are consistent with genome-wide disruption of AHR-dependent signaling in NBH fish.
  • Preprint
    Effect of PCR amplicon size on assessments of clone library microbial diversity and community structure
    ( 2008-07) Huber, Julie A. ; Morrison, Hilary G. ; Huse, Susan M. ; Neal, Phillip R. ; Sogin, Mitchell L. ; Mark Welch, David B.
    PCR-based surveys of microbial communities commonly use regions of the small subunit ribosomal RNA (SSU rRNA) gene to determine taxonomic membership and estimate total diversity. Here we show that the length of the target amplicon has a significant effect on assessments of microbial richness and community membership. Using OTU- and taxonomy-based tools, we compared the V6 hypervariable region of the bacterial SSU rRNA gene of three amplicon libraries of ca. 100 base pair (bp), 400bp, and 1000bp from each of two hydrothermal vent fluid samples. We found that the smallest amplicon libraries contained more unique sequences, higher diversity estimates, and a different community structure than the other two libraries from each sample. We hypothesize that a combination of polymerase dissociation, cloning bias, and mis-priming due to secondary structure accounts for the differences. While this relationship is not linear, it is clear that the smallest amplicon libraries contained more different types of sequences, and accordingly, more diverse members of the community. Because divergent and lower abundant taxa can be more readily detected with smaller amplicons, they may provide better assessments of total community diversity and taxonomic membership than longer amplicons in molecular studies of microbial communities.
  • Article
    Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga
    (Nature Publishing Group, 2013-07-21) Flot, Jean-Francois ; Hespeels, Boris ; Li, Xiang ; Noel, Benjamin ; Arkhipova, Irina R. ; Danchin, Etienne G. J. ; Hejno, Andreas ; Henrissat, Bernard ; Koszul, Romain ; Aury, Jean-Marc ; Barbe, Valerie ; Barthelemy, Roxane-Marie ; Bast, Jens ; Bazykin, Georgii A. ; Chabrol, Olivier ; Couloux, Arnaud ; Da Rocha, Martine ; Da Silva, Corinne ; Gladyshev, Eugene A. ; Gouret, Philippe ; Hallatschek, Oskar ; Hecox-Lea, Bette ; Labadie, Karine ; Lejeune, Benjamin ; Piskurek, Oliver ; Poulain, Julie ; Rodriguez, Fernando ; Ryan, Joseph F. ; Vakhrusheva, Olga A. ; Wajnberg, Eric ; Wirth, Benedicte ; Yushenova, Irina A. ; Kellis, Manolis ; Kondrashov, Alexey S. ; Mark Welch, David B. ; Pontarotti, Pierre ; Weissenbach, Jean ; Wincker, Patrick ; Jaillon, Olivier ; Van Doninck, Karine
    Loss of sexual reproduction is considered an evolutionary dead end for metazoans, but bdelloid rotifers challenge this view as they appear to have persisted asexually for millions of years1. Neither male sex organs nor meiosis have ever been observed in these microscopic animals: oocytes are formed through mitotic divisions, with no reduction of chromosome number and no indication of chromosome pairing2. However, current evidence does not exclude that they may engage in sex on rare, cryptic occasions. Here we report the genome of a bdelloid rotifer, Adineta vaga (Davis, 1873)3, and show that its structure is incompatible with conventional meiosis. At gene scale, the genome of A. vaga is tetraploid and comprises both anciently duplicated segments and less divergent allelic regions. However, in contrast to sexual species, the allelic regions are rearranged and sometimes even found on the same chromosome. Such structure does not allow meiotic pairing; instead, we find abundant evidence of gene conversion, which may limit the accumulation of deleterious mutations in the absence of meiosis. Gene families involved in resistance to oxidation, carbohydrate metabolism and defence against transposons are significantly expanded, which may explain why transposable elements cover only 3% of the assembled sequence. Furthermore, 8% of the genes are likely to be of non-metazoan origin and were probably acquired horizontally. This apparent convergence between bdelloids and prokaryotes sheds new light on the evolutionary significance of sex.
  • Preprint
    Lifespan extension by caloric restriction is determined by type and level of food reduction and by reproductive mode in Brachionus manjavacas (Rotifera)
    ( 2012-04-27) Gribble, Kristin E. ; Mark Welch, David B.
    We measured lifespan and fecundity of three reproductive modes in a clone of the monogonont rotifer Brachionus manjavacas subjected to chronic caloric restriction (CCR) over a range of food concentrations or to intermittent fasting (IF). IF increased lifespan 50 – 70% for all three modes, while CCR increased lifespan of asexual females derived from sexually- or asexually-produced eggs, but not that of sexual females. The main effect of CR on both asexual modes was to delay death at young ages, rather than to prevent death at middle ages or to greatly extend maximum lifespan; in contrast CR in sexual females greatly increased the lifespan of a few long-lived individuals. Lifetime fecundity did not decrease with CCR, suggesting a lack of resource allocation trade-off between somatic maintenance and reproduction. Multiple outcomes for a clonal lineage indicate that different responses are established through epigenetic programming, while differences in lifespan allocations suggest that multiple genetic mechanisms mediate lifespan extension.
  • Article
    Analysis of expressed sequence tags of the cyclically parthenogenetic rotifer Brachionus plicatilis
    (Public Library of Science, 2007-08-01) Suga, Koushirou ; Mark Welch, David B. ; Tanaka, Yukari ; Sakakura, Yoshitaka ; Hagiwara, Atsushi
    Rotifers are among the most common non-arthropod animals and are the most experimentally tractable members of the basal assemblage of metazoan phyla known as Gnathifera. The monogonont rotifer Brachionus plicatilis is a developing model system for ecotoxicology, aquatic ecology, cryptic speciation, and the evolution of sex, and is an important food source for finfish aquaculture. However, basic knowledge of the genome and transcriptome of any rotifer species has been lacking. We generated and partially sequenced a cDNA library from B. plicatilis and constructed a database of over 2300 expressed sequence tags corresponding to more than 450 transcripts. About 20% of the transcripts had no significant similarity to database sequences by BLAST; most of these contained open reading frames of significant length but few had recognized Pfam motifs. Sixteen transcripts accounted for 25% of the ESTs; four of these had no significant similarity to BLAST or Pfam databases. Putative up- and downstream untranslated regions are relatively short and AT rich. In contrast to bdelloid rotifers, there was no evidence of a conserved trans-spliced leader sequence among the transcripts and most genes were single-copy. Despite the small size of this EST project it revealed several important features of the rotifer transcriptome and of individual monogonont genes. Because there is little genomic data for Gnathifera, the transcripts we found with no known function may represent genes that are species-, class-, phylum- or even superphylum-specific; the fact that some are among the most highly expressed indicates their importance. The absence of trans-spliced leader exons in this monogonont species contrasts with their abundance in bdelloid rotifers and indicates that the presence of this phenomenon can vary at the subphylum level. Our EST database provides a relatively large quantity of transcript-level data for B. plicatilis, and more generally of rotifers and other gnathiferan phyla, and can be browsed and searched at gmod.mbl.edu.
  • Article
    Rotifers as experimental tools for investigating aging
    (Taylor & Francis, 2014-06-12) Snell, Terry W. ; Johnston, Rachel K. ; Gribble, Kristin E. ; Mark Welch, David B.
    Comparative biogerontology has much to contribute to the study of aging. A broad range of aging rates have evolved to meet environmental challenges, and understanding these adaptations can produce valuable insights into aging. The supra Phylum Lophotrochozoa is particularly understudied and has several groups that have intriguing patterns of aging. Members of the Lophotrochozoan phylum Rotifera are particularly useful for aging studies because cohort life tables can be conducted with them easily, and biochemical and genomic tools are available for examining aging mechanisms. This paper reviews a variety of caloric restriction (CR) regimens, small molecule inhibitors, and dietary supplements that extend rotifer lifespan, as well as important interactions between CR and genotype, antioxidant supplements, and TOR and jun-N-terminal kinase (JNK) pathways, and the use of RNAi to identify key genes involved in modulating the aging response. Examples of how rapamycin and JNK inhibitor exposure keeps mortality rates low during the reproductive phase of the life cycle are presented, and the ease of conducting life table experiments to screen natural products from red algae for life extending effects is illustrated. Finally, experimental evolution to produce longer-lived rotifer individuals is demonstrated, and future directions to determine the genetic basis of aging are discussed.
  • Preprint
    Isolated communities of Epsilonproteobacteria in hydrothermal vent fluids of the Mariana Arc seamounts
    ( 2010-05) Huber, Julie A. ; Cantin, Holly V. ; Huse, Susan M. ; Mark Welch, David B. ; Sogin, Mitchell L. ; Butterfield, David A.
    Low-temperature hydrothermal vent fluids represent access points to diverse microbial communities living in oceanic crust. This study examined the distribution, relative abundance, and diversity of Epsilonproteobacteria in 14 low-temperature vent fluids from 5 volcanically active seamounts of the Mariana Arc using a 454 tag sequencing approach. Most vent fluids were enriched in cell concentrations compared to background seawater, and quantitative PCR results indicated all fluids were dominated by bacteria. Operational taxonomic unit (OTU)-based statistical tools applied to 454 data show that all vents from the northern end of the Marian Arc grouped together, to the exclusion of southern arc seamounts, which were as distinct from one another as they were from northern seamounts. Statistical analysis also showed a significant relationship between seamount and individual vent groupings, suggesting that community membership may be linked to geographical isolation and not geochemical parameters. However, while there may be large-scale geographic differences, distance is not the distinguishing factor in microbial community composition. At the local scale, most vents host a distinct population of Epsilonprotoebacteria, regardless of seamount location. This suggests there may be barriers to exchange and dispersal for these vent endemic microorganisms at hydrothermal seamounts of the Mariana Arc.
  • Article
    Genome-wide transcriptomics of aging in the rotifer Brachionus manjavacas, an emerging model system
    (BioMed Central, 2017-03-01) Gribble, Kristin E. ; Mark Welch, David B.
    Understanding gene expression changes over lifespan in diverse animal species will lead to insights to conserved processes in the biology of aging and allow development of interventions to improve health. Rotifers are small aquatic invertebrates that have been used in aging studies for nearly 100 years and are now re-emerging as a modern model system. To provide a baseline to evaluate genetic responses to interventions that change health throughout lifespan and a framework for new hypotheses about the molecular genetic mechanisms of aging, we examined the transcriptome of an asexual female lineage of the rotifer Brachionus manjavacas at five life stages: eggs, neonates, and early-, late-, and post-reproductive adults. There are widespread shifts in gene expression over the lifespan of B. manjavacas; the largest change occurs between neonates and early reproductive adults and is characterized by down-regulation of developmental genes and up-regulation of genes involved in reproduction. The expression profile of post-reproductive adults was distinct from that of other life stages. While few genes were significantly differentially expressed in the late- to post-reproductive transition, gene set enrichment analysis revealed multiple down-regulated pathways in metabolism, maintenance and repair, and proteostasis, united by genes involved in mitochondrial function and oxidative phosphorylation. This study provides the first examination of changes in gene expression over lifespan in rotifers. We detected differential expression of many genes with human orthologs that are absent in Drosophila and C. elegans, highlighting the potential of the rotifer model in aging studies. Our findings suggest that small but coordinated changes in expression of many genes in pathways that integrate diverse functions drive the aging process. The observation of simultaneous declines in expression of genes in multiple pathways may have consequences for health and longevity not detected by single- or multi-gene knockdown in otherwise healthy animals. Investigation of subtle but genome-wide change in these pathways during aging is an important area for future study.
  • Article
    Dynamics of tongue microbial communities with single-nucleotide resolution using oligotyping
    (Frontiers Media, 2014-11-07) Mark Welch, Jessica L. ; Utter, Daniel R. ; Rossetti, Blair J. ; Mark Welch, David B. ; Eren, A. Murat ; Borisy, Gary G.
    The human mouth is an excellent system to study the dynamics of microbial communities and their interactions with their host. We employed oligotyping to analyze, with single-nucleotide resolution, oral microbial 16S ribosomal RNA (rRNA) gene sequence data from a time course sampled from the tongue of two individuals, and we interpret our results in the context of oligotypes that we previously identified in the oral data from the Human Microbiome Project. Our previous work established that many of these oligotypes had dramatically different distributions between individuals and across oral habitats, suggesting that they represented functionally different organisms. Here we demonstrate the presence of a consistent tongue microbiome but with rapidly fluctuating proportions of the characteristic taxa. In some cases closely related oligotypes representing strains or variants within a single species displayed fluctuating relative abundances over time, while in other cases an initially dominant oligotype was replaced by another oligotype of the same species. We use this high temporal and taxonomic level of resolution to detect correlated changes in oligotype abundance that could indicate which taxa likely interact synergistically or occupy similar habitats, and which likely interact antagonistically or prefer distinct habitats. For example, we found a strong correlation in abundance over time between two oligotypes from different families of Gamma Proteobacteria, suggesting a close functional or ecological relationship between them. In summary, the tongue is colonized by a microbial community of moderate complexity whose proportional abundance fluctuates widely on time scales of days. The drivers and functional consequences of these community dynamics are not known, but we expect they will prove tractable to future, targeted studies employing taxonomically resolved analysis of high-throughput sequencing data sampled at appropriate temporal intervals and spatial scales.
  • Article
    Maternal caloric restriction partially rescues the deleterious effects of advanced maternal age on offspring
    (Anatomical Society and John Wiley & Sons, 2014-03-24) Gribble, Kristin E. ; Jarvis, George ; Bock, Martha ; Mark Welch, David B.
    While many studies have focused on the detrimental effects of advanced maternal age and harmful prenatal environments on progeny, little is known about the role of beneficial non-Mendelian maternal inheritance on aging. Here, we report the effects of maternal age and maternal caloric restriction (CR) on the life span and health span of offspring for a clonal culture of the monogonont rotifer Brachionus manjavacas. Mothers on regimens of chronic CR (CCR) or intermittent fasting (IF) had increased life span compared with mothers fed ad libitum (AL). With increasing maternal age, life span and fecundity of female offspring of AL-fed mothers decreased significantly and life span of male offspring was unchanged, whereas body size of both male and female offspring increased. Maternal CR partially rescued these effects, increasing the mean life span of AL-fed female offspring but not male offspring and increasing the fecundity of AL-fed female offspring compared with offspring of mothers of the same age. Both maternal CR regimens decreased male offspring body size, but only maternal IF decreased body size of female offspring, whereas maternal CCR caused a slight increase. Understanding the genetic and biochemical basis of these different maternal effects on aging may guide effective interventions to improve health span and life span.