Manga
Michael
Manga
Michael
No Thumbnail Available
Search Results
Now showing
1 - 8 of 8
-
ArticleTriggering and modulation of geyser eruptions in Yellowstone National Park by earthquakes, earth tides, and weather(John Wiley & Sons, 2014-03-05) Hurwitz, Shaul ; Sohn, Robert A. ; Luttrell, Karen M. ; Manga, MichaelWe analyze intervals between eruptions (IBEs) data acquired between 2001 and 2011 at Daisy and Old Faithful geysers in Yellowstone National Park. We focus our statistical analysis on the response of these geysers to stress perturbations from within the solid earth (earthquakes and earth tides) and from weather (air pressure and temperature, precipitation, and wind). We conclude that (1) the IBEs of these geysers are insensitive to periodic stresses induced by solid earth tides and barometric pressure variations; (2) Daisy (pool geyser) IBEs lengthen by evaporation and heat loss in response to large wind storms and cold air; and (3) Old Faithful (cone geyser) IBEs are not modulated by air temperature and pressure variations, wind, and precipitation, suggesting that the subsurface water column is decoupled from the atmosphere. Dynamic stress changes of 0.1−0.2 MPa resulting from the 2002 M-7.9 Denali, Alaska, earthquake surface waves caused a statistically significant shortening of Daisy geyser's IBEs. Stresses induced by other large global earthquakes during the study period were at least an order of magnitude smaller. In contrast, dynamic stresses of >0.5 MPa from three large regional earthquakes in 1959, 1975, and 1983 caused lengthening of Old Faithful's IBEs. We infer that most subannual geyser IBE variability is dominated by internal processes and interaction with other geysers. The results of this study provide quantitative bounds on the sensitivity of hydrothermal systems to external stress perturbations and have implications for studying the triggering and modulation of volcanic eruptions by external forces.
-
PreprintThe pumice raft-forming 2012 Havre submarine eruption was effusive( 2018-02-14) Manga, Michael ; Fauria, Kristen ; Lin, Christina ; Mitchell, Samuel J. ; Jones, Meghan ; Conway, Chris E. ; Degruyter, Wim ; Hosseini, Behnaz ; Carey, Rebecca ; Cahalan, Ryan ; Houghton, Bruce ; White, James D. L. ; Jutzeler, Martin ; Soule, Samuel A. ; Tani, KenichiroA long-standing conceptual model for deep submarine eruptions is that high hydrostatic pressure hinders degassing and acceleration, and suppresses magma fragmentation. The 2012 submarine rhyolite eruption of Havre volcano in the Kermadec arc provided constraints on critical parameters to quantitatively test these concepts. This eruption produced a > 1 km3 raft of floating pumice and a 0.1 km3 field of giant (>1 m) pumice clasts distributed down-current from the vent. We address the mechanism of creating these clasts using a model for magma ascent in a conduit. We use water ingestion experiments to address why some clasts float and others sink. We show that at the eruption depth of 900 m, the melt retained enough dissolved water, and hence had a low enough viscosity, that strain-rates were too low to cause brittle fragmentation in the conduit, despite mass discharge rates similar to Plinian eruptions on land. There was still, however, enough exsolved vapor at the vent depth to make the magma buoyant relative to seawater. Buoyant magma was thus extruded into the ocean where it rose, quenched, and fragmented to produce clasts up to several meters in diameter. We show that these large clasts would have floated to the sea surface within minutes, where air could enter pore space, and the fate of clasts is then controlled by the ability to trap gas within their pore space. We show that clasts from the raft retain enough gas to remain afloat whereas fragments from giant pumice collected from the seafloor ingest more water and sink. The pumice raft and the giant pumice seafloor deposit were thus produced during a clast-generating effusive submarine eruption, where fragmentation occurred above the vent, and the subsequent fate of clasts was controlled by their ability to ingest water.
-
ArticleEruptions at Lone Star Geyser, Yellowstone National Park, USA: 1. Energetics and eruption dynamics(John Wiley & Sons, 2013-08-13) Karlstrom, Leif ; Hurwitz, Shaul ; Sohn, Robert A. ; Vandemeulebrouck, Jean ; Murphy, Fred ; Rudolph, Maxwell L. ; Johnston, Malcolm J. S. ; Manga, Michael ; McCleskey, R. BlaineGeysers provide a natural laboratory to study multiphase eruptive processes. We present results from a 4 day experiment at Lone Star Geyser in Yellowstone National Park, USA. We simultaneously measured water discharge, acoustic emissions, infrared intensity, and visible and infrared video to quantify the energetics and dynamics of eruptions, occurring approximately every 3 h. We define four phases in the eruption cycle (1) a 28±3 min phase with liquid and steam fountaining, with maximum jet velocities of 16–28 m s−1, steam mass fraction of less than ∼0.01. Intermittently choked flow and flow oscillations with periods increasing from 20 to 40 s are coincident with a decrease in jet velocity and an increase of steam fraction; (2) a 26±8 min posteruption relaxation phase with no discharge from the vent, infrared (IR), and acoustic power oscillations gliding between 30 and 40 s; (3) a 59±13 min recharge period during which the geyser is quiescent and progressively refills, and (4) a 69±14 min preplay period characterized by a series of 5–10 min long pulses of steam, small volumes of liquid water discharge, and 50–70 s flow oscillations. The erupted waters ascend from a 160–170°C reservoir, and the volume discharged during the entire eruptive cycle is 20.8±4.1 m3. Assuming isentropic expansion, we calculate a heat output from the geyser of 1.4–1.5 MW, which is <0.1% of the total heat output from Yellowstone Caldera.
-
ArticleMicrostructural differences between naturally-deposited and laboratory beach sands(Springer, 2021-11-11) Ferrick, Amy ; Wright, Vanshan ; Manga, Michael ; Sitar, NicholasThe orientation of, and contacts between, grains of sand reflect the processes that deposit the sands. Grain orientation and contact geometry also influence mechanical properties. Quantifying and understanding sand microstructure thus provide an opportunity to understand depositional processes better and connect microstructure and macroscopic properties. Using x-ray computed microtomography, we compare the microstructure of naturally-deposited beach sands and laboratory sands created by air pluviation in which samples are formed by raining sand grains into a container. We find that naturally-deposited sands have a narrower distribution of coordination number (i.e., the number of grains in contact) and a broader distribution of grain orientations than pluviated sands. The naturally-deposited sand grains orient inclined to the horizontal, and the pluviated sand grains orient horizontally. We explain the microstructural differences between the two different depositional methods by flowing water at beaches that re-positions and reorients grains initially deposited in unstable grain configurations.
-
ArticleNo cryosphere-confined aquifer below InSight on Mars(American Geophysical Union, 2021-04-11) Manga, Michael ; Wright, VanshanThe seismometer deployed by the InSight lander measured the seismic velocity of the Martian crust. We use a rock physics model to interpret those velocities and constrain hydrogeological properties. The seismic velocity of the upper ∼10 km is too low to be ice-saturated. Hence there is no cryosphere that confines deeper aquifers and possibly no aquifers locally. An increase in seismic velocity at depths of ∼10 km could be explained by a few volume percent of mineral cement (1%–5%) in pore space and may document the past depth of aquifers.
-
ArticleSubmarine giant pumice: A window into the shallow conduit dynamics of a recent silicic eruption.(Springer, 2019-06-29) Mitchell, Samuel J. ; Houghton, Bruce ; Carey, Rebecca ; Manga, Michael ; Fauria, Kristen ; Jones, Meghan R. ; Soule, S. Adam ; Conway, Chris E. ; Wei, Zihan ; Giachetti, ThomasMeter-scale vesicular blocks, termed “giant pumice,” are characteristic primary products of many subaqueous silicic eruptions. The size of giant pumices allows us to describe meter-scale variations in textures and geochemistry with implications for shearing processes, ascent dynamics, and thermal histories within submarine conduits prior to eruption. The submarine eruption of Havre volcano, Kermadec Arc, in 2012, produced at least 0.1 km3 of rhyolitic giant pumice from a single 900-m-deep vent, with blocks up to 10 m in size transported to at least 6 km from source. We sampled and analyzed 29 giant pumices from the 2012 Havre eruption. Geochemical analyses of whole rock and matrix glass show no evidence for geochemical heterogeneities in parental magma; any textural variations can be attributed to crystallization of phenocrysts and microlites, and degassing. Extensive growth of microlites occurred near conduit walls where magma was then mingled with ascending microlite-poor, low viscosity rhyolite. Meter- to micron-scale textural analyses of giant pumices identify diversity throughout an individual block and between the exteriors of individual blocks. We identify evidence for post-disruption vesicle growth during pumice ascent in the water column above the submarine vent. A 2D cumulative strain model with a flared, shallow conduit may explain observed vesicularity contrasts (elongate tube vesicles vs spherical vesicles). Low vesicle number densities in these pumices from this high-intensity silicic eruption demonstrate the effect of hydrostatic pressure above a deep submarine vent in suppressing rapid late-stage bubble nucleation and inhibiting explosive fragmentation in the shallow conduit.
-
ArticleEruptions at Lone Star geyser, Yellowstone National Park, USA: 2. Constraints on subsurface dynamics(John Wiley & Sons, 2014-12-05) Vandemeulebrouck, Jean ; Sohn, Robert A. ; Rudolph, Maxwell L. ; Hurwitz, Shaul ; Manga, Michael ; Johnston, Malcolm J. S. ; Soule, Samuel A. ; McPhee, Darcy ; Glen, Jonathan M. G. ; Karlstrom, Leif ; Murphy, FredWe use seismic, tilt, lidar, thermal, and gravity data from 32 consecutive eruption cycles of Lone Star geyser in Yellowstone National Park to identify key subsurface processes throughout the geyser's eruption cycle. Previously, we described measurements and analyses associated with the geyser's erupting jet dynamics. Here we show that seismicity is dominated by hydrothermal tremor (~5–40 Hz) attributed to the nucleation and/or collapse of vapor bubbles. Water discharge during eruption preplay triggers high-amplitude tremor pulses from a back azimuth aligned with the geyser cone, but during the rest of the eruption cycle it is shifted to the east-northeast. Moreover, ~4 min period ground surface displacements recur every 26 ± 8 min and are uncorrelated with the eruption cycle. Based on these observations, we conclude that (1) the dynamical behavior of the geyser is controlled by the thermo-mechanical coupling between the geyser conduit and a laterally offset reservoir periodically filled with a highly compressible two-phase mixture, (2) liquid and steam slugs periodically ascend into the shallow crust near the geyser system inducing detectable deformation, (3) eruptions occur when the pressure decrease associated with overflow from geyser conduit during preplay triggers an unstable feedback between vapor generation (cavitation) and mass discharge, and (4) flow choking at a constriction in the conduit arrests the runaway process and increases the saturated vapor pressure in the reservoir by a factor of ~10 during eruptions.
-
ArticleThe largest deep-ocean silicic volcanic eruption of the past century(American Association for the Advancement of Science, 2018-01-10) Carey, Rebecca ; Soule, Samuel A. ; Manga, Michael ; White, James D. L. ; McPhie, Jocelyn ; Wysoczanski, Richard ; Jutzeler, Martin ; Tani, Kenichiro ; Yoerger, Dana R. ; Fornari, Daniel J. ; Caratori Tontini, Fabio ; Houghton, Bruce ; Mitchell, Samuel ; Ikegami, Fumihiko ; Conway, Chris E. ; Murch, Arran ; Fauria, Kristen ; Jones, Meghan ; Cahalan, Ryan ; McKenzie, WarrenThe 2012 submarine eruption of Havre volcano in the Kermadec arc, New Zealand, is the largest deep-ocean eruption in history and one of very few recorded submarine eruptions involving rhyolite magma. It was recognized from a gigantic 400-km2 pumice raft seen in satellite imagery, but the complexity of this event was concealed beneath the sea surface. Mapping, observations, and sampling by submersibles have provided an exceptionally high fidelity record of the seafloor products, which included lava sourced from 14 vents at water depths of 900 to 1220 m, and fragmental deposits including giant pumice clasts up to 9 m in diameter. Most (>75%) of the total erupted volume was partitioned into the pumice raft and transported far from the volcano. The geological record on submarine volcanic edifices in volcanic arcs does not faithfully archive eruption size or magma production.