Preindustrial-control and twentieth-century carbon cycle experiments with the Earth System Model CESM1(BGC)

Thumbnail Image
Lindsay, Keith
Bonan, Gordon B.
Doney, Scott C.
Hoffman, Forrest M.
Lawrence, David M.
Long, Matthew C.
Mahowald, Natalie M.
Moore, J. Keith
Randerson, James T.
Thornton, Peter E.
Alternative Title
Date Created
Replaced By
Carbon cycle
Climate models
Coupled models
Model evaluation/performance
Version 1 of the Community Earth System Model, in the configuration where its full carbon cycle is enabled, is introduced and documented. In this configuration, the terrestrial biogeochemical model, which includes carbon–nitrogen dynamics and is present in earlier model versions, is coupled to an ocean biogeochemical model and atmospheric CO2 tracers. The authors provide a description of the model, detail how preindustrial-control and twentieth-century experiments were initialized and forced, and examine the behavior of the carbon cycle in those experiments. They examine how sea- and land-to-air CO2 fluxes contribute to the increase of atmospheric CO2 in the twentieth century, analyze how atmospheric CO2 and its surface fluxes vary on interannual time scales, including how they respond to ENSO, and describe the seasonal cycle of atmospheric CO2 and its surface fluxes. While the model broadly reproduces observed aspects of the carbon cycle, there are several notable biases, including having too large of an increase in atmospheric CO2 over the twentieth century and too small of a seasonal cycle of atmospheric CO2 in the Northern Hemisphere. The biases are related to a weak response of the carbon cycle to climatic variations on interannual and seasonal time scales and to twentieth-century anthropogenic forcings, including rising CO2, land-use change, and atmospheric deposition of nitrogen.
Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 27 (2014): 8981–9005, doi:10.1175/JCLI-D-12-00565.1.
Embargo Date
Journal of Climate 27 (2014): 8981–9005
Cruise ID
Cruise DOI
Vessel Name