Longworth Brett E.

No Thumbnail Available
Last Name
Longworth
First Name
Brett E.
ORCID

Search Results

Now showing 1 - 5 of 5
  • Preprint
    Carbonate as sputter target material for rapid 14C AMS
    ( 2012-04-17) Longworth, Brett E. ; Robinson, Laura F. ; Roberts, Mark L. ; Beaupre, Steven R. ; Burke, Andrea ; Jenkins, William J.
    This paper describes a technique for measuring the 14C content of carbonate samples by producing C-ions directly in the negative ion sputter source of an accelerator mass spectrometer (AMS) system. This direct analysis of carbonate material eliminates the time and expense of graphite preparation. Powdered carbonate is mixed with titanium powder, loaded into a target cartridge, and compressed. Beam currents for optimally sized carbonate targets (0.09-0.15 mg C) are typically 10-20% of those produced by optimally-sized graphite targets (0.5-1 mg C). Modern (>0.8 Fm) samples run by this method have standard deviations of 0.009 Fm or less, and near-modern samples run as unknowns agree with values from traditional hydrolysis/graphite to better than 2%. Targets with as little as 0.06 mg carbonate produce useable ion currents and results, albeit with increased error and larger blank. In its current state, direct sputtering is best applied to problems where a large number of analyses with lower precision are required. These applications could include age surveys of deep-sea corals for determination of historic population dynamics, to identify samples that would benefit from high precision analysis, and for growth rate studies of organisms forming carbonate skeletons.
  • Preprint
    The deep distributions of helium isotopes, radiocarbon, and noble gases along the U.S. GEOTRACES East Pacific Zonal Transect (GP16)
    ( 2017-03) Jenkins, William J. ; Lott, Dempsey E. ; German, Christopher R. ; Cahill, Kevin L. ; Goudreau, Joanne ; Longworth, Brett E.
    We report the deep distributions of noble gases, helium isotopes, and radiocarbon measured during the U.S. GEOTRACES GP16 East Pacific Zonal Transect between 152 and 77°W at 12- 15°S in the South Pacific. The dominant feature is an intense tongue of hydrothermal effluent that extends more than 4,000 km westward from the East Pacific Rise (EPR) at ~2500m depth. The patterns reveal significant “downstream” variations in water mass structure, advection, and mixing that belie the simple perception of a continuous plume extending westward from the EPR. For example, one feature observed at 120°W, 14°S has tracer signatures that are consistent with a water mass originating from an area as much as 2,000 km south of this section, suggesting a quasi-permanent northward flow on the western flank of the EPR. Helium isotope variations in the plume show a uniquely high 3He/4He source in the tongue compared with typical mid-ocean ridge basalts (MORB), consistent with the anomalously high ratios observed in MORB glasses from the EPR segment just south of this transect. The water column data also reveal that the background 3He/4He east of the EPR is significantly lower than values characteristic of MORB, suggesting an additional, more geographically distributed radiogenic 4He flux of order 107 mol/y into the deep Pacific. In the western end of the section, incoming bottom waters have relatively less hydrothermal hydrothermal helium, more radiocarbon, and more oxygen, as well as negative saturation anomalies for the heavy noble gases (Ar, Kr, and Xe). During the basin-scale upwelling of this water, diapycnal mixing serves to erase these negative anomalies. The relative magnitudes of the increases for the heavy noble gases (Ar, Kr, and Xe) are quantitatively consistent with this process. This leads us to estimate the relatively smaller effects on He and Ne saturations, which range from near zero to 0.2% and 0.3% respectively. With this information, we are able to refine our estimates of the magnitude of 3He and 4He excesses and the absolute 3He/4He ratio of non-atmospheric helium introduced into deep Pacific waters.
  • Article
    Advances in Sample Preparation at the National Ocean Sciences Accelerator Mass Spectrometry Facility (NOSAMS): Investigation of Carbonate Secondary Standards
    ( 2017) Cruz, Anne J. ; Childress, Laurel B. ; Gagnon, Alan R. ; McNichol, Ann P. ; Burton, Joshua R. ; Elder, Kathryn L. ; Lardie Gaylord, Mary C. ; Gospodinova, Kalina D. ; Hlavenka, Joshua ; Kurz, Mark D. ; Longworth, Brett E. ; Roberts, Mark L. ; Trowbridge, Nan Y. ; Walther, Tess ; Xu, Li
    The development of robust sample preparation techniques for ocean science research has been a hallmark of NOSAMS since its inception. Improvements to our standard methods include reducing the minimum size of the samples we can analyze, building modular graphite reactors of different sizes that we can swap in and out depending on our sample stream, and modifying our carbonate acidification methods to improve handling of the smaller samples we now receive. A relatively new instrument, the Ramped PyrOx, which allows the separation of organic matter into thermal fractions, has attracted much interest as a research and development tool. We will also discuss our progress on incorporating a Picarro isotope analyzer into our sample preparation options.
  • Article
    A high-performance 14C accelerator mass spectrometry system
    (Dept. of Geosciences, University of Arizona, 2010-08) Roberts, Mark L. ; Burton, Joshua R. ; Elder, Kathryn L. ; Longworth, Brett E. ; McIntyre, Cameron P. ; von Reden, Karl F. ; Han, Baoxi ; Rosenheim, Brad E. ; Jenkins, William J. ; Galutschek, Ernst ; McNichol, Ann P.
    A new and unique radiocarbon accelerator mass spectrometry (AMS) facility has been constructed at the Woods Hole Oceanographic Institution. The defining characteristic of the new system is its large-gap optical elements that provide a larger-than-standard beam acceptance. Such a system is ideally suited for high-throughput, high-precision measurements of 14C. Details and performance of the new system are presented.
  • Article
    C-14 Blank Corrections for 25-100 mu G samples at the National Ocean Sciences AMS Laboratory
    (Cambridge University Press, 2019-07-22) Roberts, Mark L. ; Elder, Kathryn L. ; Jenkins, William J. ; Gagnon, Alan R. ; Xu, Li ; Hlavenka, Joshua ; Longworth, Brett E.
    Replicate radiocarbon (14C) measurements of organic and inorganic control samples, with known Fraction Modern values in the range Fm = 0–1.5 and mass range 6 μg–2 mg carbon, are used to determine both the mass and radiocarbon content of the blank carbon introduced during sample processing and measurement in our laboratory. These data are used to model, separately for organic and inorganic samples, the blank contribution and subsequently “blank correct” measured unknowns in the mass range 25–100 μg. Data, formulas, and an assessment of the precision and accuracy of the blank correction are presented.