Gilson John

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 5 of 5
  • Article
    The Argo Program : observing the global ocean with profiling floats
    (Oceanography Society, 2009-06) Roemmich, Dean ; Johnson, Gregory C. ; Riser, Stephen C. ; Davis, Russ E. ; Gilson, John ; Owens, W. Brechner ; Garzoli, Silvia L. ; Schmid, Claudia ; Ignaszewski, Mark
    The Argo Program has created the first global array for observing the subsurface ocean. Argo arose from a compelling scientific need for climate-relevant ocean data; it was made possible by technology development and implemented through international collaboration. The float program and its data management system began with regional arrays in 1999, scaled up to global deployments by 2004, and achieved its target of 3000 active instruments in 2007. US Argo, supported by the National Oceanic and Atmospheric Administration and the Navy through the National Oceanographic Partnership Program, provides half of the floats in the international array, plus leadership in float technology, data management, data quality control, international coordination, and outreach. All Argo data are freely available without restriction, in real time and in research-quality forms. Uses of Argo data range from oceanographic research, climate research, and education, to operational applications in ocean data assimilation and seasonal-to-decadal prediction. Argo’s value grows as its data accumulate and their applications are better understood. Continuing advances in profiling float and sensor technologies open many exciting possibilities for Argo’s future, including expanding sampling into high latitudes and the deep ocean, improving near-surface sampling, and adding biogeochemical parameters.
  • Article
    An Argo mixed layer climatology and database
    (John Wiley & Sons, 2017-06-12) Holte, James ; Talley, Lynne D. ; Gilson, John ; Roemmich, Dean
    A global climatology and database of mixed layer properties are computed from nearly 1,250,000 Argo profiles. The climatology is calculated with both a hybrid algorithm for detecting the mixed layer depth (MLD) and a standard threshold method. The climatology provides accurate information about the depth, properties, extent, and seasonal patterns of global mixed layers. The individual profile results in the database can be used to construct time series of mixed layer properties in specific regions of interest. The climatology and database are available online at The MLDs calculated by the hybrid algorithm are shallower and generally more accurate than those of the threshold method, particularly in regions of deep winter mixed layers; the new climatology differs the most from existing mixed layer climatologies in these regions. Examples are presented from the Labrador and Irminger Seas, the Southern Ocean, and the North Atlantic Ocean near the Gulf Stream. In these regions the threshold method tends to overestimate winter MLDs by approximately 10% compared to the algorithm.
  • Book chapter
    Global Oceans [in “State of the Climate in 2020”]
    (American Meteorological Society, 2021-08-01) Johnson, Gregory C. ; Lumpkin, Rick ; Alin, Simone R. ; Amaya, Dillon J. ; Baringer, Molly O. ; Boyer, Tim ; Brandt, Peter ; Carter, Brendan ; Cetinić, Ivona ; Chambers, Don P. ; Cheng, Lijing ; Collins, Andrew U. ; Cosca, Cathy ; Domingues, Ricardo ; Dong, Shenfu ; Feely, Richard A. ; Frajka-Williams, Eleanor E. ; Franz, Bryan A. ; Gilson, John ; Goni, Gustavo J. ; Hamlington, Benjamin D. ; Herrford, Josefine ; Hu, Zeng-Zhen ; Huang, Boyin ; Ishii, Masayoshi ; Jevrejeva, Svetlana ; Kennedy, John J. ; Kersalé, Marion ; Killick, Rachel E. ; Landschützer, Peter ; Lankhorst, Matthias ; Leuliette, Eric ; Locarnini, Ricardo ; Lyman, John ; Marra, John F. ; Meinen, Christopher S. ; Merrifield, Mark ; Mitchum, Gary ; Moat, Bengamin I. ; Nerem, R. Steven ; Perez, Renellys ; Purkey, Sarah G. ; Reagan, James ; Sanchez-Franks, Alejandra ; Scannell, Hillary A. ; Schmid, Claudia ; Scott, Joel P. ; Siegel, David A. ; Smeed, David A. ; Stackhouse, Paul W. ; Sweet, William V. ; Thompson, Philip R. ; Trinanes, Joaquin ; Volkov, Denis L. ; Wanninkhof, Rik ; Weller, Robert A. ; Wen, Caihong ; Westberry, Toby K. ; Widlansky, Matthew J. ; Wilber, Anne C. ; Yu, Lisan ; Zhang, Huai-Min
    This chapter details 2020 global patterns in select observed oceanic physical, chemical, and biological variables relative to long-term climatologies, their differences between 2020 and 2019, and puts 2020 observations in the context of the historical record. In this overview we address a few of the highlights, first in haiku, then paragraph form: La Niña arrives, shifts winds, rain, heat, salt, carbon: Pacific—beyond. Global ocean conditions in 2020 reflected a transition from an El Niño in 2018–19 to a La Niña in late 2020. Pacific trade winds strengthened in 2020 relative to 2019, driving anomalously westward Pacific equatorial surface currents. Sea surface temperatures (SSTs), upper ocean heat content, and sea surface height all fell in the eastern tropical Pacific and rose in the western tropical Pacific. Efflux of carbon dioxide from ocean to atmosphere was larger than average across much of the equatorial Pacific, and both chlorophyll-a and phytoplankton carbon concentrations were elevated across the tropical Pacific. Less rain fell and more water evaporated in the western equatorial Pacific, consonant with increased sea surface salinity (SSS) there. SSS may also have increased as a result of anomalously westward surface currents advecting salty water from the east. El Niño–Southern Oscillation conditions have global ramifications that reverberate throughout the report.
  • Article
    Argo data 1999-2019: two million temperature-salinity profiles and subsurface velocity observations from a global array of profiling floats.
    (Frontiers Media, 2020-09-15) Wong, Annie P. S. ; Wijffels, Susan E. ; Riser, Stephen C. ; Pouliquen, Sylvie ; Hosoda, Shigeki ; Roemmich, Dean ; Gilson, John ; Johnson, Gregory C. ; Martini, Kim I. ; Murphy, David J. ; Scanderbeg, Megan ; Udaya Bhaskar, T. V. S. ; Buck, Justin J. H. ; Merceur, Frederic ; Carval, Thierry ; Maze, Guillaume ; Cabanes, Cécile ; André, Xavier ; Poffa, Noé ; Yashayaev, Igor ; Barker, Paul M. ; Guinehut, Stéphanie ; Belbeoch, Mathieu ; Ignaszewski, Mark ; Baringer, Molly O. ; Schmid, Claudia ; Lyman, John ; McTaggart, Kristene E. ; Purkey, Sarah G. ; Zilberman, Nathalie ; Alkire, Matthew ; Swift, Dana ; Owens, W. Brechner ; Jayne, Steven R. ; Hersh, Cora ; Robbins, Pelle E. ; West-Mack, Deb ; Bahr, Frank B. ; Yoshida, Sachiko ; Sutton, Philip J. H. ; Cancouët, Romain ; Coatanoan, Christine ; Dobbler, Delphine ; Garcia Juan, Andrea ; Gourrion, Jérôme ; Kolodziejczyk, Nicolas ; Bernard, Vincent ; Bourlès, Bernard ; Claustre, Hervé ; d’Ortenzio, Fabrizio ; Le Reste, Serge ; Le Traon, Pierre-Yves ; Rannou, Jean-Philippe ; Saout-Grit, Carole ; Speich, Sabrina ; Thierry, Virginie ; Verbrugge, Nathalie ; Angel-Benavides, Ingrid M. ; Klein, Birgit ; Notarstefano, Giulio ; Poulain, Pierre Marie ; Vélez-Belchí, Pedro ; Suga, Toshio ; Ando, Kentaro ; Iwasaska, Naoto ; Kobayashi, Taiyo ; Masuda, Shuhei ; Oka, Eitarou ; Sato, Kanako ; Nakamura, Tomoaki ; Sato, Katsunari ; Takatsuki, Yasushi ; Yoshida, Takashi ; Cowley, Rebecca ; Lovell, Jenny L. ; Oke, Peter ; van Wijk, Esmee ; Carse, Fiona ; Donnelly, Matthew ; Gould, W. John ; Gowers, Katie ; King, Brian A. ; Loch, Stephen G. ; Mowat, Mary ; Turton, Jon ; Pattabhi Rama Rao, Eluri ; Ravichandran, M. ; Freeland, Howard ; Gaboury, Isabelle ; Gilbert, Denis ; Greenan, Blair J. W. ; Ouellet, Mathieu ; Ross, Tetjana ; Tran, Anh ; Dong, Mingmei ; Liu, Zenghong ; Xu, Jianping ; Kang, KiRyong ; Jo, HyeongJun ; Kim, Sung-Dae ; Park, Hyuk-Min
    In the past two decades, the Argo Program has collected, processed, and distributed over two million vertical profiles of temperature and salinity from the upper two kilometers of the global ocean. A similar number of subsurface velocity observations near 1,000 dbar have also been collected. This paper recounts the history of the global Argo Program, from its aspiration arising out of the World Ocean Circulation Experiment, to the development and implementation of its instrumentation and telecommunication systems, and the various technical problems encountered. We describe the Argo data system and its quality control procedures, and the gradual changes in the vertical resolution and spatial coverage of Argo data from 1999 to 2019. The accuracies of the float data have been assessed by comparison with high-quality shipboard measurements, and are concluded to be 0.002°C for temperature, 2.4 dbar for pressure, and 0.01 PSS-78 for salinity, after delayed-mode adjustments. Finally, the challenges faced by the vision of an expanding Argo Program beyond 2020 are discussed.
  • Article
    Heat stored in the Earth system: where does the energy go?
    (Copernicus Publications, 2020-09-07) von Schuckmann, Karina ; Cheng, Lijing ; Palmer, Matthew D. ; Hansen, James ; Tassone, Caterina ; Aicher, Valentin ; Adusumilli, Susheel ; Beltrami, Hugo ; Boyer, Tim ; Cuesta-Valero, Francisco José ; Desbruyeres, Damien ; Domingues, Catia M. ; García-García, Almudena ; Gentine, Pierre ; Gilson, John ; Gorfer, Maximilian ; Haimberger, Leopold ; Ishii, Masayoshi ; Johnson, Gregory C. ; Killick, Rachel E. ; King, Brian A. ; Kirchengast, Gottfried ; Kolodziejczyk, Nicolas ; Lyman, John ; Marzeion, Ben ; Mayer, Michael ; Monier, Maeva ; Monselesan, Didier Paolo ; Purkey, Sarah G. ; Roemmich, Dean ; Schweiger, Axel ; Seneviratne, Sonia I. ; Shepherd, Andrew ; Slater, Donald A. ; Steiner, Andrea K. ; Straneo, Fiammetta ; Timmermans, Mary-Louise ; Wijffels, Susan E.
    Human-induced atmospheric composition changes cause a radiative imbalance at the top of the atmosphere which is driving global warming. This Earth energy imbalance (EEI) is the most critical number defining the prospects for continued global warming and climate change. Understanding the heat gain of the Earth system – and particularly how much and where the heat is distributed – is fundamental to understanding how this affects warming ocean, atmosphere and land; rising surface temperature; sea level; and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory and presents an updated assessment of ocean warming estimates as well as new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960–2018. The study obtains a consistent long-term Earth system heat gain over the period 1971–2018, with a total heat gain of 358±37 ZJ, which is equivalent to a global heating rate of 0.47±0.1 W m−2. Over the period 1971–2018 (2010–2018), the majority of heat gain is reported for the global ocean with 89 % (90 %), with 52 % for both periods in the upper 700 m depth, 28 % (30 %) for the 700–2000 m depth layer and 9 % (8 %) below 2000 m depth. Heat gain over land amounts to 6 % (5 %) over these periods, 4 % (3 %) is available for the melting of grounded and floating ice, and 1 % (2 %) is available for atmospheric warming. Our results also show that EEI is not only continuing, but also increasing: the EEI amounts to 0.87±0.12 W m−2 during 2010–2018. Stabilization of climate, the goal of the universally agreed United Nations Framework Convention on Climate Change (UNFCCC) in 1992 and the Paris Agreement in 2015, requires that EEI be reduced to approximately zero to achieve Earth's system quasi-equilibrium. The amount of CO2 in the atmosphere would need to be reduced from 410 to 353 ppm to increase heat radiation to space by 0.87 W m−2, bringing Earth back towards energy balance. This simple number, EEI, is the most fundamental metric that the scientific community and public must be aware of as the measure of how well the world is doing in the task of bringing climate change under control, and we call for an implementation of the EEI into the global stocktake based on best available science. Continued quantification and reduced uncertainties in the Earth heat inventory can be best achieved through the maintenance of the current global climate observing system, its extension into areas of gaps in the sampling, and the establishment of an international framework for concerted multidisciplinary research of the Earth heat inventory as presented in this study. This Earth heat inventory is published at the German Climate Computing Centre (DKRZ,, last access: 7 August 2020) under the DOI (von Schuckmann et al., 2020).