Presentations and Papers

Permanent URI for this collection

This collection represents presentations made by members of the staff of the MBLWHOI Library or at the behest of the Library, and articles authored by members of the Library staff.

Browse

Recent Submissions

Now showing 1 - 20 of 205
  • Article
    Taming the terminological tempest in invasion science
    (Cambridge Philosophical Society, 2024-03-18) Soto, Ismael ; Balzani, Paride ; Carneiro, Lais ; Cuthbert, Ross N. ; Macedo, Rafael ; Tarkan, Ali Serhan ; Ahmed, Danish A. ; Bang, Alok ; Bacela-Spychalska, Karolina ; Bailey, Sarah A. ; Baudry, Thomas ; Ballesteros-Mejia, Liliana ; Bortolus, Alejandro ; Briski, Elizabeta ; Britton, J. Robert ; Buric, Milos ; Camacho-Cervantes, Morelia ; Cano-Barbacil, Carlos ; Copilas-Ciocianu, Denis ; Coughlan, Neil E. ; Courtois, Pierre ; Csabai, Zoltan ; Dalu, Tatenda ; De Santis, Vanessa ; Dickey, James W. E. ; Dimarco, Romina D. ; Falk-Andersson, Jannike ; Fernandez, Romina D. ; Florencio, Margarita ; Franco, Ana Clara S. ; Garcia-Berthou, Emili ; Giannetto, Daniela ; Glavendekic, Milka M. ; Grabowski, Michał ; Heringer, Gustavo ; Herrera, Ileana ; Huang, Wei ; Kamelamela, Katie L. ; Kirichenko, Natalia I. ; Kouba, Antonin ; Kourantidou, Melina ; Kurtul, Irmak ; Laufer, Gabriel ; Liptak, Boris ; Liu, Chunlong ; Lopez-Lopez, Eugenia ; Lozano, Vanessa ; Mammola, Stefano ; Marchini, Agnese ; Meshkova, Valentyna ; Milardi, Marco ; Musolin, Dmitrii L. ; Nunez, Martin A. ; Oficialdegui, Francisco J. ; Patoka, Jiri ; Pattison, Zarah ; Pincheira-Donoso, Daniel ; Piria, Marina ; Probert, Anna F. ; Rasmussen, Jes Jessen ; Renault, David ; Ribeiro, Filipe ; Rilov, Gil ; Robinson, Tamara B. ; Sanchez, Axel E. ; Schwindt, Evangelina ; South, Josie ; Stoett, Peter ; Verreycken, Hugo ; Vilizzi, Lorenzo ; Wang, Yong-Jian ; Watari, Yuya ; Wehi, Priscilla M. ; Weiperth, Andras ; Wiberg-Larsen, Peter ; Yapici, Sercan ; Yogurtcuoglu, Baran ; Zenni, Rafael D. ; Galil, Bella S. ; Dick, Jaimie T. A. ; Russell, James C. ; Ricciardi, Anthony ; Simberloff, Daniel ; Bradshaw, Corey J. A. ; Haubrock, Phillip J.
    Standardised terminology in science is important for clarity of interpretation and communication. In invasion science – a dynamic and rapidly evolving discipline – the proliferation of technical terminology has lacked a standardised framework for its development. The result is a convoluted and inconsistent usage of terminology, with various discrepancies in descriptions of damage and interventions. A standardised framework is therefore needed for a clear, universally applicable, and consistent terminology to promote more effective communication across researchers, stakeholders, and policymakers. Inconsistencies in terminology stem from the exponential increase in scientific publications on the patterns and processes of biological invasions authored by experts from various disciplines and countries since the 1990s, as well as publications by legislators and policymakers focusing on practical applications, regulations, and management of resources. Aligning and standardising terminology across stakeholders remains a challenge in invasion science. Here, we review and evaluate the multiple terms used in invasion science (e.g. ‘non-native’, ‘alien’, ‘invasive’ or ‘invader’, ‘exotic’, ‘non-indigenous’, ‘naturalised’, ‘pest’) to propose a more simplified and standardised terminology. The streamlined framework we propose and translate into 28 other languages is based on the terms (i) ‘non-native’, denoting species transported beyond their natural biogeographic range, (ii) ‘established non-native’, i.e. those non-native species that have established self-sustaining populations in their new location(s) in the wild, and (iii) ‘invasive non-native’ – populations of established non-native species that have recently spread or are spreading rapidly in their invaded range actively or passively with or without human mediation. We also highlight the importance of conceptualising ‘spread’ for classifying invasiveness and ‘impact’ for management. Finally, we propose a protocol for classifying populations based on (i) dispersal mechanism, (ii) species origin, (iii) population status, and (iv) impact. Collectively and without introducing new terminology, the framework that we present aims to facilitate effective communication and collaboration in invasion science and management of non-native species.
  • Article
    Ocean bottom distributed acoustic sensing for oceanic seismicity detection and seismic ocean thermometry
    (American Geophysical Union, 2024-03-07) Shen, Zhichao ; Wu, Wenbo
    A T-wave is a seismo-acoustic wave that can travel a long distance in the ocean with little attenuation, making it valuable for monitoring remote tectonic activity and changes in ocean temperature using seismic ocean thermometry (SOT). However, current high-quality T-wave stations are sparsely distributed, limiting the detectability of oceanic seismicity and the spatial resolution of global SOT. The use of ocean bottom distributed acoustic sensing (OBDAS), through the conversion of telecommunication cables into dense seismic arrays, is a cost-effective and scalable means to complement existing seismic stations. Here, we systematically investigate the performance of OBDAS for oceanic seismicity detection and SOT using a 4-day Ocean Observatories Initiative community experiment offshore Oregon. We first present T-wave observations from distant and regional earthquakes and develop a curvelet denoising scheme to enhance T-wave signals on OBDAS. After denoising, we show that OBDAS can detect and locate more and smaller T-wave events than regional OBS network. During the 4-day experiment, we detect 92 oceanic earthquakes, most of which are missing from existing catalogs. Leveraging the sensor density and cable directionality, we demonstrate the feasibility of source azimuth estimation for regional Blanco earthquakes. We also evaluate the SOT performance of OBDAS using pseudo-repeating earthquake T-waves. Our results show that OBDAS can utilize repeating earthquakes as small as M3.5 for SOT, outperforming ocean bottom seismometers. However, ocean ambient natural and instrumental noise strongly affects the performance of OBDAS for oceanic seismicity detection and SOT, requiring further investigation.
  • Article
    Nitrogen fixation at the Mid‐Atlantic Bight Shelfbreak and transport of newly fixed nitrogen to the Slope Sea
    (American Geophysical Union, 2024-04-05) Selden, Corday R. ; Mulholland, Margaret R. ; Crider, Katie E. ; Clayton, Sophie A. ; Macias-Tapia, Alfonso ; Bernhardt, Peter W. ; McGillicuddy, Dennis J. ; Zhang, Weifeng Gordon ; Chappell, Phoebe Dreux
    Continental shelves contribute a large fraction of the ocean's new nitrogen (N) via N2 fixation; yet, we know little about how physical processes at the ocean's margins shape diazotroph biogeography and activity. Here, we test the hypothesis that frontal mixing favors N2 fixation at the Mid-Atlantic Bight shelfbreak. Using the 15N2 bubble release method, we measured N2 fixation rates on repeat cross-frontal transects in July 2019. N2 fixation rates in shelf waters (median = 5.42 nmol N L−1 d−1) were higher than offshore (2.48 nmol N L−1 d−1) but did not significantly differ front frontal waters (8.42 nmol N L−1 d−1). However, specific N2 uptake rates, indicative of the relative contribution of diazotroph-derived N to particulate N turnover, were significantly higher in frontal waters, suggesting that diazotroph-derived N is of greater importance in supporting productivity there. This study furthered captured an ephemeral shelf-water streamer, which resulted from the impingement of a warm core ring on the shelf. The streamer transported shelf-water diazotrophs (including UCYN-A and Richelia spp., as assessed by qPCR) offshore with sustained high N2 fixation rates. This feature injected >50 metric tons d−1 of newly fixed N to the Slope Sea—a rate equivalent to ∼4% of the total N flux estimated for the entire Mid-Atlantic Bight. As intrusions of Gulf Stream meanders and eddies onto the shelf are increasing in frequency due to climate change, episodic lateral fluxes of new N into the Slope Sea may become increasingly important to regional budgets and ecosystem productivity.
  • Article
    Vertical energy fluxes driven by the interaction between wave groups and Langmuir turbulence
    (American Meteorological Society, 2024-06-26) Scully, Malcolm E. ; Zippel, Seth F.
    Data from an air–sea interaction tower are used to close the turbulent kinetic energy (TKE) budget in the wave-affected surface layer of the upper ocean. Under energetic wind forcing with active wave breaking, the dominant balance is between the dissipation rate of TKE and the downward convergence in vertical energy flux. The downward energy flux is driven by pressure work, and the TKE transport is upward, opposite to the downgradient assumption in most turbulence closure models. The sign and the relative magnitude of these energy fluxes are hypothesized to be driven by an interaction between the vertical velocity of Langmuir circulation (LC) and the kinetic energy and pressure of wave groups, which is the result of small-scale wave–current interaction. Consistent with previous modeling studies, the data suggest that the horizontal velocity anomaly associated with LC refracts wave energy away from downwelling regions and into upwelling regions, resulting in negative covariance between the vertical velocity of LC and the pressure anomaly associated with the wave groups. The asymmetry between downward pressure work and upward TKE flux is explained by the Bernoulli response of the sea surface, which results in groups of waves having a larger pressure anomaly than the corresponding kinetic energy anomaly, consistent with group-bound long-wave theory.
  • Article
    Proteomics analysis reveals differential acclimation of coastal and oceanic Synechococcus to climate warming and iron limitation
    (Frontiers Media, 2024-02-20) Schiksnis, Cara ; Xu, Min ; Saito, Mak A. ; McIlvin, Matthew R. ; Moran, Dawn M. ; Bian, Xiaopeng ; John, Seth G. ; Zheng, Qiang ; Yang, Nina ; Fu, Feixue ; Hutchins, David A.
    In many oceanic regions, anthropogenic warming will coincide with iron (Fe) limitation. Interactive effects between warming and Fe limitation on phytoplankton physiology and biochemical function are likely, as temperature and Fe availability affect many of the same essential cellular pathways. However, we lack a clear understanding of how globally significant phytoplankton such as the picocyanobacteria Synechococcus will respond to these co-occurring stressors, and what underlying molecular mechanisms will drive this response. Moreover, ecotype-specific adaptations can lead to nuanced differences in responses between strains. In this study, Synechococcus isolates YX04-1 (oceanic) and XM-24 (coastal) from the South China Sea were acclimated to Fe limitation at two temperatures, and their physiological and proteomic responses were compared. Both strains exhibited reduced growth due to warming and Fe limitation. However, coastal XM-24 maintained relatively higher growth rates in response to warming under replete Fe, while its growth was notably more compromised under Fe limitation at both temperatures compared with YX04-1. In response to concurrent heat and Fe stress, oceanic YX04-1 was better able to adjust its photosynthetic proteins and minimize the generation of reactive oxygen species while reducing proteome Fe demand. Its intricate proteomic response likely enabled oceanic YX04-1 to mitigate some of the negative impact of warming on its growth during Fe limitation. Our study highlights how ecologically-shaped adaptations in Synechococcus strains even from proximate oceanic regions can lead to differing physiological and proteomic responses to these climate stressors.
  • Article
    Development of the channelized optical system II for in situ, high-frequency measurements of dissolved inorganic carbon in seawater
    (American Chemical Society, 2024-03-25) Ringham, Mallory C. ; Wang, Zhaohui Aleck ; Sonnichsen, Frederick ; Lerner, Steven A. ; McDonald, Glenn ; Pfeifer, Jonathan A.
    This study describes the development of the CHANnelized Optical System II (CHANOS II), an autonomous, in situ sensor capable of measuring seawater dissolved inorganic carbon (DIC) at high frequency (up to ∼1 Hz). In this sensor, CO2 from acidified seawater is dynamically equilibrated with a pH-sensitive indicator dye encapsulated in gas-permeable Teflon AF 2400 tubing. The pH in the CO2 equilibrated indicator is measured spectrophotometrically and can be quantitatively correlated to the sample DIC. Ground-truthed field data demonstrate the sensor’s capabilities in both time-series measurements and surface mapping in two coastal sites across tidal cycles. CHANOS II achieved an accuracy and precision of ±5.9 and ±5.5 μmol kg–1. The mean difference between traditional bottle and sensor measurements was −3.7 ± 10.0 (1σ) μmol kg–1. The sensor can perform calibration in situ using Certified Reference Materials (CRMs) to ensure measurement quality. The coastal time-series measurements highlight high-frequency variability and episodic biogeochemical shifts that are difficult to capture by traditional methods. Surface DIC mapping shows multiple endmembers in an estuary and highlights fine-scale spatial variabilities of DIC. The development of CHANOS II demonstrates a significant technological advance in seawater CO2 system sensing, which enables high-resolution, subsurface time-series, and profiling deployments.
  • Article
    Substantial warming of the Atlantic Ocean in CMIP6 Models
    (American Meteorological Society, 2024-05-17) Ren, Qiuping ; Kwon, Young-Oh ; Yang, Jiayan ; Huang, Rui Xin ; Li, Yuanlong ; Wang, Fan
    The storage of anthropogenic heat in oceans is geographically inhomogeneous, leading to differential warming rates among major ocean basins with notable regional climate impacts. Our analyses of observation-based datasets show that the average warming rate of 0–2000-m Atlantic Ocean since 1960 is nearly threefold stronger than that of the Indo-Pacific Oceans. This feature is robustly captured by historical simulations of phase 6 of Coupled Model Intercomparison Project (CMIP6) and is projected to persist into the future. In CMIP6 simulations, the ocean heat uptake through surface heat fluxes plays a central role in shaping the interbasin warming contrasts. In addition to the slowdown of the Atlantic meridional overturning circulation as stressed in some existing studies, alterations of atmospheric conditions under greenhouse warming are also essential for the increased surface heat flux into the North Atlantic. Specifically, the reduced anthropogenic aerosol concentration in the North Atlantic since the 1980s has been favorable for the enhanced Atlantic Ocean heat uptake in CMIP6 models. Another previously overlooked factor is the geographic shape of the Atlantic Ocean which is relatively wide in midlatitudes and narrow in low latitudes, in contrast to that of the Indo-Pacific Oceans. Combined with the poleward migration of atmospheric circulations, which leads to the meridional pattern of surface heat uptake with broadly enhanced heat uptake in midlatitude oceans due to reduced surface wind speed and cloud cover, the geographic shape effect renders a higher basin-average heat uptake in the Atlantic.
  • Article
    Pacific seafloor in the 40-52 Myr old portion of the Molokai to Murray corridor
    (Elsevier, 2024-02-18) Blackman, Donna K. ; Talavera-Soza, Sujania ; Hung, Ruei-Jiun ; Collins, John A. ; Laske, Gabi
    A detailed study of the character of 40–52 Myr old Northeast Pacific seafloor illustrates how volcanism that occurs outside a spreading center axial zone contributes to the morphology of a region. A compilation of new and pre-existing multibeam sonar data forms the basis of our study, which lies within the spreading corridor bounded by Molokai and Murray fracture zones and does not include a major volcanic chain. The broad structure is consistent with constant crustal thickness and lithospheric cooling with age, and our analyses focus on the deviations from this ‘reference’ model. We find three types of volcanic features where typical abyssal hill fabric is generally not observed: 1) volcanic ridges that have a length of 30–120 km and a height of 1–2 km; 2) moderate seamounts that have a diameter of 8–15 km and a height of several 100's m; and 3) fields of very small seamounts, which extend several 10's km and are more common at ∼25% coverage than in other Pacific regions away from major volcanic chains. Gravity analysis suggests that the volcanic ridges and a few of the moderate seamounts are associated with local crustal thickening whereas the fields of very small seamounts do not display a distinct mass anomaly. Quantifying the distribution of past volcanism in this section of the Pacific plate during its evolution after initial accretion helps illustrate the degree of off-axis magmatism. Although we interpret the volcanic ridges as presently inactive, their formation on lithosphere older than at least a few Myr likely had an impact on the local seismic structure.
  • Article
    Decreasing body size is associated with reduced calving probability in critically endangered North Atlantic right whales
    (Royal Society of Chemistry, 2024-02-28) Pirotta, Enrico ; Tyack, Peter L. ; Durban, John W. ; Fearnbach, Holly ; Hamilton, Philip K. ; Harris, Catriona M. ; Knowlton, Amy R. ; Kraus, Scott D. ; Miller, Carolyn A. ; Moore, Michael J. ; Pettis, Heather M. ; Photopoulou, Theoni ; Rolland, Rosalind M. ; Schick, Robert S. ; Thomas, Len
    Body size is key to many life-history processes, including reproduction. Across species, climate change and other stressors have caused reductions in the body size to which animals can grow, called asymptotic size, with consequences for demography. A reduction in mean asymptotic length was documented for critically endangered North Atlantic right whales, in parallel with declines in health and vital rates resulting from human activities and environmental changes. Here, we tested whether smaller body size was associated with lower reproductive output, using a state-space model for individual health, survival and reproduction that quantifies the mechanistic links between these processes. Body size (as represented by the cube of length) was strongly associated with a female's calving probability at each reproductive opportunity. This relationship explained 62% of the variation in calving among reproductive females, along with their decreasing health (20%). The effects of decreasing mean body size on reproductive performance are another concerning indication of the worsening prospects for this species and many others affected by environmental change, requiring a focus of conservation and management interventions on improving conditions that affect reproduction as well as reducing mortality.
  • Article
    Shift from income breeding to capital breeding with latitude in the invasive Asian shore crab Hemigrapsus sanguineus
    (Nature Research, 2024-03-20) Reese, Tanner C. ; Blakeslee, April M. H. ; Crane, Laura C. ; Fletcher, Laura S. ; Repetto, Michele F. ; Smith, Nanette ; Stancil, Carter ; Tepolt, Carolyn K. ; Toscano, Benjamin J. ; Griffen, Blaine D.
    Organisms vary in the timing of energy acquisition and use for reproduction. Thus, breeding strategies exist on a continuum, from capital breeding to income breeding. Capital breeders acquire and store energy for breeding before the start of the reproductive season, while income breeders finance reproduction using energy acquired during the reproductive season. Latitude and its associated environmental drivers are expected to heavily influence breeding strategy, potentially leading to latitudinal variation in breeding strategies within a single species. We examined the breeding strategy of the Asian shore crab Hemigrapsus sanguineus at five sites spanning nearly 10° of latitude across its invaded United States range. We hypothesized that the primary breeding strategy of this species would shift from income breeding to capital breeding as latitude increases. We found that though this species’ breeding strategy is dominated by capital breeding throughout much of the range, income breeding increases in importance at lower latitudes. This latitudinal pattern is likely heavily influenced by the duration of the foraging and breeding seasons, which also vary with latitude. We also found that reproductive characteristics at the northern and southern edges of the invaded range were consistent with continued range expansion. We suggest that the reproductive flexibility of the Asian shore crab is a key facilitator of its continued invasion success. Our results highlight the influence of latitude on the breeding strategy of a species and emphasize the need for further research regarding the ecological importance and implications of flexibility in breeding strategies within species.
  • Article
    Seismic ocean thermometry of the Kuroshio Extension region
    (American Geophysical Union, 2024-02-24) Peng, Shirui ; Callies, Jorn ; Wu, Wenbo ; Zhan, Zhongwen
    Seismic ocean thermometry uses sound waves generated by repeating earthquakes to measure temperature change in the deep ocean. In this study, waves generated by earthquakes along the Japan Trench and received at Wake Island are used to constrain temperature variations in the Kuroshio Extension region. This region is characterized by energetic mesoscale eddies and large decadal variability, posing a challenging sampling problem for conventional ocean observations. The seismic measurements are obtained from a hydrophone station off and a seismic station on Wake Island, with the seismic station's digital record reaching back to 1997. These measurements are combined in an inversion for the time and azimuth dependence of the range-averaged deep temperatures, revealing lateral and temporal variations due to Kuroshio Extension meanders, mesoscale eddies, and decadal water mass displacements. These results highlight the potential of seismic ocean thermometry for better constraining the variability and trends in deep-ocean temperatures. By overcoming the aliasing problem of point measurements, these measurements complement existing ship- and float-based hydrographic measurements.
  • Article
    A model for community-driven development of best practices: The Ocean Observatories Initiative biogeochemical sensor data best practices and user guide
    (Frontiers Media, 2024-04-03) Palevsky, Hilary I. ; Clayton, Sophie A. ; Benway, Heather M. ; Maheigan, Mairead ; Atamanchuk, Dariia ; Battisti, Roman ; Batryn, Jennifer ; Bourbonnais, Annie ; Briggs, Ellen M. ; Carvalho, Filipa ; Chase, Alison P. ; Eveleth, Rachel ; Fatland, Rob ; Fogaren, Kristen E. ; Fram, Jonathan Peter ; Hartman, Susan E. ; Le Bras, Isabela ; Manning, Cara C. ; Needoba, Joseph A. ; Neely, Merrie Beth ; Oliver, Hilde ; Reed, Andrew C. ; Rheuban, Jennie E. ; Schallenberg, Christina ; Walsh, Ian ; Wingard, Christopher ; Bauer, Kohen ; Chen, Baoshan ; Cuevas, Jose ; Flecha, Susana ; Horwith, Micah ; Melendez, Melissa ; Menz, Tyler ; Rivero-Calle, Sara ; Roden, Nicholas P. ; Steinhoff, Tobias ; Trucco-Pignata, Pablo Nicolas ; Vardaro, Michael F. ; Yoder, Meg
    The field of oceanography is transitioning from data-poor to data-rich, thanks in part to increased deployment of in-situ platforms and sensors, such as those that instrument the US-funded Ocean Observatories Initiative (OOI). However, generating science-ready data products from these sensors, particularly those making biogeochemical measurements, often requires extensive end-user calibration and validation procedures, which can present a significant barrier. Openly available community-developed and -vetted Best Practices contribute to overcoming such barriers, but collaboratively developing user-friendly Best Practices can be challenging. Here we describe the process undertaken by the NSF-funded OOI Biogeochemical Sensor Data Working Group to develop Best Practices for creating science-ready biogeochemical data products from OOI data, culminating in the publication of the GOOS-endorsed OOI Biogeochemical Sensor Data Best Practices and User Guide. For Best Practices related to ocean observatories, engaging observatory staff is crucial, but having a “user-defined” process ensures the final product addresses user needs. Our process prioritized bringing together a diverse team and creating an inclusive environment where all participants could effectively contribute. Incorporating the perspectives of a wide range of experts and prospective end users through an iterative review process that included “Beta Testers’’ enabled us to produce a final product that combines technical information with a user-friendly structure that illustrates data analysis pipelines via flowcharts and worked examples accompanied by pseudo-code. Our process and its impact on improving the accessibility and utility of the end product provides a roadmap for other groups undertaking similar community-driven activities to develop and disseminate new Ocean Best Practices.
  • Article
    Planktonic marine fungi: A review
    (American Geophysical Union, 2024-03-03) Peng, Xuefeng ; Amend, Anthony S. ; Baltar, Federico ; Blanco-Bercial, Leocadio ; Breyer, Eva ; Burgaud, Gaetan ; Cunliffe, Michael ; Edgcomb, Virginia P. ; Grossart, Hans-Peter ; Mara, Paraskevi ; Masigol, Hossein ; Pang, Ka-Lai ; Retter, Alice ; Roberts, Cordelia ; van Bleijswijk, Judith ; Walker, Allison K. ; Whitner, Syrena
    Fungi in marine ecosystems play crucial roles as saprotrophs, parasites, and pathogens. The definition of marine fungi has evolved over the past century. Currently, “marine fungi” are defined as any fungi recovered repeatedly from marine habitats that are able to grow and/or sporulate in marine environments, form symbiotic relationships with other marine organisms, adapt and evolve at the genetic level, or are active metabolically in marine environments. While there are a number of recent reviews synthesizing our knowledge derived from over a century of research on marine fungi, this review article focuses on the state of knowledge on planktonic marine fungi from the coastal and open ocean, defined as fungi that are in suspension or attached to particles, substrates or in association with hosts in the pelagic zone of the ocean, and their roles in remineralization of organic matter and major biogeochemical cycles. This review differs from previous ones by focusing on biogeochemical impacts of planktonic marine fungi and methodological considerations for investigating their diversity and ecological functions. Importantly, we point out gaps in our knowledge and the potential methodological biases that might have contributed to these gaps. Finally, we highlight recommendations that will facilitate future studies of marine fungi. This article first provides a brief overview of the diversity of planktonic marine fungi, followed by a discussion of the biogeochemical impacts of planktonic marine fungi, and a wide range of methods that can be used to study marine fungi.
  • Article
    Managing offshore multi-use settings: use of conceptual mapping to reduce uncertainty of co-locating seaweed aquaculture and wind farms
    (Elsevier, 2024-04-12) O'Shea, Ryan ; Capuzzo, Elisa ; Hemming, Victoria ; Grebe, Gretchen S. ; Stafford, Rick ; van den Burg, Sander Willem Kors ; Wood, Daniel T. ; Watson, Gordon James ; Wells, Victoria K. ; Johnson, Teresa R. ; Erbs, Stefan ; van Hal, Jaap W. ; Binnerts, Bas ; Collins, Alexandra Mary ; Howe, Caroline
    The offshore Multi-use Setting (MUS) is a concept that aims to co-locate marine industrial activities, including wind farms and aquaculture. MUS is considered an innovative approach to promoting efficiency in space and resource use whilst contributing global policy priorities. However, the impacts of MUS development across social, economic, and environmental domains are uncertain, hindering the commercialisation of the concept. In this study, we initially demonstrate the potential consequences of co-locating seaweed aquaculture and a wind farm as a step towards MUS. Using a hypothetical case study and modified Delphi methodology, 14 subject matter experts predicted potential outcomes across social and environmental objectives. Five Cognitive maps and impact tables of 58 potential consequences were generated based on experts' perspective on co-locating seaweed aquaculture and a wind farm. The findings highlight the potential to exasperate pressures in the area, including those already attributed to wind farm operations, such as species mortality and stakeholder conflict. However, it may also enhance social-ecological conditions, such as resource provisioning and promoting habitat functionality in the region, through the addition of seaweed aquaculture. The cognitive maps demonstrate the complexity of managing MUS implementation, where high degree of variability and uncertainty about the outcomes is present. The findings of this study provide the vital entry point to performing further integrative assessment and modelling approaches, such as probabilistic analysis and simulations, in support of MUS decision-making. The research also strongly recommends alternative strategies in the pursuit of combining seaweed production and wind farms to avoid significant financial (among many other) trade-offs and risks. More broadly, we have found that our approach's ability to visually represent a complex situation while considering multiple objectives could be immensely valuable for other bioeconomy innovations or nature-based solutions. It helps mitigate the potential for expensive investments without a comprehensive evaluation of the associated risks and negative impacts, as necessitated by the principles of sustainability in decision-making.
  • Article
    Geometric stochastic ray propagation using the special Euclidean group
    (Acoustical Society of America, 2024-04-08) Paine, Tyler ; Bhatt, EeShan C.
    This paper describes a stochastic model of ray trajectory propagation through a medium—such as the ocean—which has an uncertain sound speed profile. We frame ray propagation as a geometric fractal Brownian motion process on the special Euclidean group of dimension two, SE(2). The framing includes diffusion parameters to describe how the stochastic rays deviate from the expected rays, and these diffusion parameters are a function of the uncertainty in the sound speed profile. We demonstrate this framing for the classical Munk profile and a double-ducted profile in the Beaufort.
  • Article
    Best practices for core Argo floats—Part 1: getting started and data considerations
    (Frontiers Media, 2024-03-27) Morris, Tamaryn ; Scanderbeg, Megan ; West-Mack, Deborah ; Gourcuff, Claire ; Poffa, Noe ; Udaya Bhaskar, T. V. S. ; Hanstein, Craig ; Diggs, Steve ; Talley, Lynne D. ; Turpin, Victor ; Liu, Zenghong ; Owens, Breck
    Argo floats have been deployed in the global ocean for over 20 years. The Core mission of the Argo program (Core Argo) has contributed well over 2 million profiles of salinity and temperature of the upper 2000 m of the water column for a variety of operational and scientific applications. Core Argo floats have evolved such that the program currently consists of more than eight types of Core Argo float, some of which belong to second or third generation developments, three unique satellite communication systems (Argos, Iridium and Beidou) and two types of Conductivity, Temperature and Depth (CTD) sensor systems (Seabird and RBR). This, together with a well-established data management system, delayed mode data quality control, FAIR and open data access, make the program a very successful ocean observing network. Here we present Part 1 of the Best Practices for Core Argo floats in terms of how users can get started in the program, recommended metadata parameters and the data management system. The objective is to encourage new and developing scientists, research teams and institutions to contribute to the OneArgo Program, specifically to the Core Argo mission. Only by leveraging sustained contributions from current Core Argo float groups with new and emerging Argo teams and users who are eager to get involved and are actively encouraged to do so, can the OneArgo initiative be realized. This paper presents a list of best practices to get started in the program, set up the recommended metadata, implement the data management system with the aim to encourage new scientists, countries and research teams to contribute to the OneArgo Program.
  • Article
    Monitoring changes to alkenone biosynthesis in commercial Tisochrysis lutea Microalgae
    (American Chemical Society, 2024-03-27) O’Neil, Gregory W. ; Keller, Allison ; Balila, Jazmine ; Golden, Sydney ; Sipila, Nate ; Stone, Britton ; Nelson, Robert K. ; Reddy, Christopher M.
    Alkenones are unique lipids produced by certain species of microalgae, well-known for use in paleoclimatology, and more recently pursued to advance sustainability across multiple industries. Beginning in 2018, the biosynthesis of alkenones by commercially grown Tisochrysis lutea (T-Iso) microalgae from one of the world’s most established producers, Necton S.A., changed dramatically from structures containing 37 and 38 carbons, to unusual shorter-chain C35 and C36 diunsaturated alkenones (C35:2 and C36:2 alkenones). While the exact reasons for this change remain unknown, analysis of alkenones isolated from T-Iso grown in 2021 and 2023 revealed that this change has persisted. The structure of these rare shorter-chain alkenones, including double bond position, produced by Necton T-Iso remained the same over the last five years, which was determined using a new and optimized cross-metathesis derivatization approach with analysis by comprehensive two-dimensional gas chromatography and NMR. However, noticeable differences in the alkenone profiles among the different batches were observed. Combined with fatty acid compositional analysis, the data suggest a connection between these lipid classes (e.g., increased DHA corresponds to lower amounts of shorter-chain alkenones) and the ability to manipulate their biosynthesis in T-Iso with changes to cultivation conditions.
  • Article
    Disentangling top-down drivers of mortality underlying diel population dynamics of Prochlorococcus in the North Pacific Subtropical Gyre
    (Nature Research, 2024-03-07) Beckett, Stephen J. ; Demory, David ; Coenen, Ashley R. ; Casey, John R. ; Dugenne, Mathilde ; Follett, Christopher L. ; Connell, Paige ; Carlson, Michael C. G. ; Hu, Sarah K. ; Wilson, Samuel T. ; Muratore, Daniel ; Rodriguez-Gonzalez, Rogelio A. ; Peng, Shengyun ; Becker, Kevin W. ; Mende, Daniel R. ; Armbrust, E. Virginia ; Caron, David A. ; Lindell, Debbie ; White, Angelicque E. ; Ribalet, Francois ; Weitz, Joshua S.
    Photosynthesis fuels primary production at the base of marine food webs. Yet, in many surface ocean ecosystems, diel-driven primary production is tightly coupled to daily loss. This tight coupling raises the question: which top-down drivers predominate in maintaining persistently stable picocyanobacterial populations over longer time scales? Motivated by high-frequency surface water measurements taken in the North Pacific Subtropical Gyre (NPSG), we developed multitrophic models to investigate bottom-up and top-down mechanisms underlying the balanced control of Prochlorococcus populations. We find that incorporating photosynthetic growth with viral- and predator-induced mortality is sufficient to recapitulate daily oscillations of Prochlorococcus abundances with baseline community abundances. In doing so, we infer that grazers in this environment function as the predominant top-down factor despite high standing viral particle densities. The model-data fits also reveal the ecological relevance of light-dependent viral traits and non-canonical factors to cellular loss. Finally, we leverage sensitivity analyses to demonstrate how variation in life history traits across distinct oceanic contexts, including variation in viral adsorption and grazer clearance rates, can transform the quantitative and even qualitative importance of top-down controls in shaping Prochlorococcus population dynamics.
  • Article
    Enriched regions of 228Ra along the U.S. GEOTRACES Pacific Meridional Transect (GP15)
    (American Geophysical Union, 2024-03-07) Moore, Willard S. ; Charette, Matthew A. ; Henderson, Paul B. ; Hammond, Douglas E. ; Kemnitz, Nathaniel ; Le Roy, Emilie ; Kwon, Eun Young ; Hult, Mikael
    The half-life of 228Ra (5.7 years) aligns well with near-surface and near-bottom ocean mixing timescales. Because 228Ra is sourced from sediments, regions of enhanced activity represent water that has recently interacted with sediments on the continental margin or seabed. The GP15 meridional transect from Alaska to Tahiti along152°W encountered several regions in the upper ocean where 228Ra was enriched. These enrichments follow surface and subsurface ocean current patterns and pair with earlier measurements of 228Ra and transient radionuclides to reveal the origins of these enriched regions. An enriched region at Alaska margin stations 1–3 was sourced locally but did not extend to the Alaskan trench at station 4. A large shallow region between 47° and 32°N. was sourced from the west by the North Pacific Current; another shallow enriched region between 11° and 5° N was also sourced from the west by the North Equatorial Countercurrent. Subsurface enrichments (100–400 m) between 18 and 47°N were associated with Central Mode Water and North Pacific Intermediate Water. The 228Ra activities in the upper Pacific were six times lower than activities in the Atlantic. In deep waters the primary enrichment was 27°–47°N. Two stations (32° and 37°N) were especially enriched, having near-bottom inventories several times greater than other stations. With these two exceptions the remaining Pacific stations exhibited averaged inventories lower than those in the Atlantic. There was one region of enriched 223Ra (half-life = 11 days) above the Puna Ridge near Hawaii.
  • Article
    Shark microbiome analysis demonstrates unique microbial communities in two distinct Mediterranean Sea shark species
    (MDPI, 2024-03-11) Montemagno, Francesco ; Romano, Chiara ; Bastoni, Deborah ; Cordone, Angelina ; De Castro, Olga ; Stefanni, Sergio ; Sperone, Emilio ; Giovannelli, Donato
    Our knowledge regarding the role of the microbiome in fish health has been steadily increasing in the last decade, especially for species of commercial interest. Conversely, relatively few studies focus on the microbiomes of wild fish, especially apex predators like sharks, due to lower economic interest and greater difficulty in obtaining samples. Studies investigating microbiome differences between diverse anatomical locations of sharks are limited, and the majority of the available studies are focused on the microbial diversity present on shark teeth, with the aim of preventing infections due to bites of these animals or evaluating the presence of certain pathogens in healthy or diseased specimens. Here, we investigated the skin, mouth, gills, and cloaca microbiomes of five individuals of two phylogenetically distant species of sharks (Prionace glauca and Somniosus rostratus) to obtain a better understanding of the diversity regarding the microbiomes of these animals, how they change throughout different body parts, and how much they are influenced and determined by the ecology and evolutionary relationship between host and microbiome. To confirm the taxonomy of the sharks under study, we barcoded the specimens by sequencing the mtDNA COI from a biopsy of their skin. Microbial diversity based on the 16S rRNA gene reveals that partially overlapping microbiomes inhabit different body parts of each shark species, while the communities are distinct between the two species. Our results suggest that sharks’ microbiome species-specific differences are controlled by the ecology of the shark species. This is the first study comparatively analyzing the microbiome diversity of different anatomical locations in two shark species of the Mediterranean Sea.