Seafloor photo-geology and sonar terrain modeling at the 9°N overlapping spreading center, East Pacific Rise
Date
2013-12-20Author
Klein, Emily M.
Concept link
White, Scott M.
Concept link
Nunnery, James Andrew
Concept link
Mason-Stack, Jessica L.
Concept link
Wanless, V. Dorsey
Concept link
Perfit, Michael R.
Concept link
Waters, Christopher L.
Concept link
Sims, Kenneth W. W.
Concept link
Fornari, Daniel J.
Concept link
Zaino, Anne J.
Concept link
Ridley, W. Ian
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/6490As published
https://doi.org/10.1002/2013GC004858DOI
10.1002/2013GC004858Keyword
Mid-ocean ridge; Overlapping spreading center; Melt lens; Axial magma chamber; Dike; Ocean crustAbstract
A fundamental goal in the study of mid-ocean ridges is to understand the relationship between the distribution of melt at depth and seafloor features. Building on geophysical information on subsurface melt at the 9°N overlapping spreading center on the East Pacific Rise, we use terrain modeling (DSL-120A side scan and bathymetry), photo-geology (Jason II and WHOI TowCam), and geochemical data to explore this relationship. Terrain modeling identified four distinct geomorphic provinces with common seafloor characteristics that correspond well to changes in subsurface melt distribution. Visual observations were used to interpret terrain modeling results and to establish a relative seafloor age scale, calibrated with radiometric age dates, to identify areas of recent volcanism. On the east limb, recent eruptions in the north are localized over the margins of the 4 km wide asymmetric melt sill, forming a prominent off-axis pillow ridge. Along the southern east limb, recent eruptions occur along a neovolcanic ridge that hugs the overlap basin and lies several kilometers west of the plunging melt sill. Our results suggest that long-term southward migration of the east limb occurs through a series of diking events with a net southward propagation direction. Examining sites of recent eruptions in the context of geophysical data on melt distribution in the crust and upper mantle suggests melt may follow complex paths from depth to the surface. Overall, our findings emphasize the value of integrating information obtained from photo-geology, terrain modeling, lava geochemistry and petrography, and geophysics to constrain the nature of melt delivery at mid-ocean ridges.
Description
© The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geochemistry, Geophysics, Geosystems 14 (2013): 5146–5170, doi:10.1002/2013GC004858.
Collections
Suggested Citation
Geochemistry, Geophysics, Geosystems 14 (2013): 5146–5170The following license files are associated with this item:
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0
Related items
Showing items related by title, author, creator and subject.
-
Lucky Strike seamount : implications for the emplacement and rifting of segment-centered volcanoes at slow spreading mid-ocean ridges
Escartin, Javier E.; Soule, Samuel A.; Cannat, Mathilde; Fornari, Daniel J.; Dusunur, D.; Garcia, Rafael (John Wiley & Sons, 2014-11-07)The history of emplacement, tectonic evolution, and dismemberment of a central volcano within the rift valley of the slow spreading Mid-Atlantic Ridge at the Lucky Strike Segment is deduced using near-bottom sidescan sonar ... -
Effects of variable magma supply on mid-ocean ridge eruptions : constraints from mapped lava flow fields along the Galápagos Spreading Center
Colman, Alice; Sinton, John M.; White, Scott M.; McClinton, J. Timothy; Bowles, Julie A.; Rubin, Kenneth H.; Behn, Mark D.; Cushman, Buffy; Eason, Deborah E.; Gregg, Tracy K. P.; Gronvold, Karl; Hidalgo, Silvana; Howell, Julia; Neill, Owen; Russo, Chris (American Geophysical Union, 2012-08-25)Mapping and sampling of 18 eruptive units in two study areas along the Galápagos Spreading Center (GSC) provide insight into how magma supply affects mid-ocean ridge (MOR) volcanic eruptions. The two study areas have similar ... -
Hydroacoustic monitoring of oceanic spreading centers : past, present, and future
Dziak, Robert P.; Bohnenstiehl, DelWayne R.; Smith, Deborah K. (The Oceanography Society, 2012-03)Mid-ocean ridge volcanism and extensional faulting are the fundamental processes that lead to the creation and rifting of oceanic crust, yet these events go largely undetected in the deep ocean. Currently, the only means ...