Ridley W. Ian

No Thumbnail Available
Last Name
Ridley
First Name
W. Ian
ORCID

Search Results

Now showing 1 - 5 of 5
  • Article
    Geochemistry of lavas from the 2005–2006 eruption at the East Pacific Rise, 9°46′N–9°56′N : implications for ridge crest plumbing and decadal changes in magma chamber compositions
    (American Geophysical Union, 2010-05-12) Goss, Adam R. ; Perfit, Michael R. ; Ridley, W. Ian ; Rubin, Kenneth H. ; Kamenov, George D. ; Soule, Samuel A. ; Fundis, A. ; Fornari, Daniel J.
    Detailed mapping, sampling, and geochemical analyses of lava flows erupted from an ∼18 km long section of the northern East Pacific Rise (EPR) from 9°46′N to 9°56′N during 2005–2006 provide unique data pertaining to the short-term thermochemical changes in a mid-ocean ridge magmatic system. The 2005–2006 lavas are typical normal mid-oceanic ridge basalt with strongly depleted incompatible trace element patterns with marked negative Sr and Eu/Eu* anomalies and are slightly more evolved than lavas erupted in 1991–1992 at the same location on the EPR. Spatial geochemical differences show that lavas from the northern and southern limits of the 2005–2006 eruption are more evolved than those erupted in the central portion of the fissure system. Similar spatial patterns observed in 1991–1992 lavas suggest geochemical gradients are preserved over decadal time scales. Products of northern axial and off-axis fissure eruptions are consistent with the eruption of cooler, more fractionated lavas that also record a parental melt component not observed in the main suite of 2005–2006 lavas. Radiogenic isotopic ratios for 2005–2006 lavas fall within larger isotopic fields defined for young axial lavas from 9°N to 10°N EPR, including those from the 1991–1992 eruption. Geochemical data from the 2005–2006 eruption are consistent with an invariable mantle source over the spatial extent of the eruption and petrogenetic processes (e.g., fractional crystallization and magma mixing) operating within the crystal mush zone and axial magma chamber (AMC) before and during the 13 year repose period. Geochemical modeling suggests that the 2005–2006 lavas represent differentiated residual liquids from the 1991–1992 eruption that were modified by melts added from deeper within the crust and that the eruption was not initiated by the injection of hotter, more primitive basalt directly into the AMC. Rather, the eruption was driven by AMC pressurization from persistent or episodic addition of more evolved magma from the crystal mush zone into the overlying subridge AMC during the period between the two eruptions. Heat balance calculations of a hydrothermally cooled AMC support this model and show that continual addition of melt from the mush zone was required to maintain a sizable AMC over this time interval.
  • Article
    Seafloor photo-geology and sonar terrain modeling at the 9°N overlapping spreading center, East Pacific Rise
    (John Wiley & Sons, 2013-12-20) Klein, Emily M. ; White, Scott M. ; Nunnery, James Andrew ; Mason-Stack, Jessica L. ; Wanless, V. Dorsey ; Perfit, Michael R. ; Waters, Christopher L. ; Sims, Kenneth W. W. ; Fornari, Daniel J. ; Zaino, Anne J. ; Ridley, W. Ian
    A fundamental goal in the study of mid-ocean ridges is to understand the relationship between the distribution of melt at depth and seafloor features. Building on geophysical information on subsurface melt at the 9°N overlapping spreading center on the East Pacific Rise, we use terrain modeling (DSL-120A side scan and bathymetry), photo-geology (Jason II and WHOI TowCam), and geochemical data to explore this relationship. Terrain modeling identified four distinct geomorphic provinces with common seafloor characteristics that correspond well to changes in subsurface melt distribution. Visual observations were used to interpret terrain modeling results and to establish a relative seafloor age scale, calibrated with radiometric age dates, to identify areas of recent volcanism. On the east limb, recent eruptions in the north are localized over the margins of the 4 km wide asymmetric melt sill, forming a prominent off-axis pillow ridge. Along the southern east limb, recent eruptions occur along a neovolcanic ridge that hugs the overlap basin and lies several kilometers west of the plunging melt sill. Our results suggest that long-term southward migration of the east limb occurs through a series of diking events with a net southward propagation direction. Examining sites of recent eruptions in the context of geophysical data on melt distribution in the crust and upper mantle suggests melt may follow complex paths from depth to the surface. Overall, our findings emphasize the value of integrating information obtained from photo-geology, terrain modeling, lava geochemistry and petrography, and geophysics to constrain the nature of melt delivery at mid-ocean ridges.
  • Article
    Extreme heterogeneity in mid-ocean ridge mantle revealed in lavas from the 8 degrees 20 ' N near-axis seamount chain
    (American Geophysical Union, 2020-12-14) Anderson, Molly ; Wanless, V. Dorsey ; Perfit, Michael R. ; Conrad, Ethan ; Gregg, Patricia M. ; Fornari, Daniel J. ; Ridley, W. Ian
    Lavas that have erupted at near‐axis seamounts provide windows into mid‐ocean ridge mantle heterogeneity and melting systematics which are not easily observed on‐axis at fast‐spreading centers. Beneath ridges, most heterogeneity is obscured as magmas aggregate toward the ridge, where they efficiently mix and homogenize during transit and within shallow magma chambers prior to eruption. To understand the deeper magmatic processes contributing to oceanic crustal formation, we examine the compositions of lavas erupted along a chain of near‐axis seamounts and volcanic ridges perpendicular to the East Pacific Rise. We assess the chemistry of near‐ridge mantle using a ∼200 km‐long chain at ∼8°20′N. High‐resolution bathymetric maps are used with geochemical analyses of ∼300 basalts to evaluate the petrogenesis of lavas and the heterogeneity of mantle feeding these near‐axis eruptions. Major and trace element concentrations and radiogenic isotope ratios are highly variable on <1 km scales, and reveal a continuum of depleted, normal, and enriched basalts spanning the full range of ridge and seamount compositions in the northeast Pacific. There is no systematic compositional variability along the chain. Modeling suggests that depleted mid‐ocean ridge basalt (DMORB) lavas are produced by ∼5%–15% melting of a depleted mid‐ocean ridge (MOR) mantle. Normal mid‐ocean ridge basalts (NMORB) form from 5% to 15% melting of a slightly enriched MOR mantle. Enriched mid‐ocean ridge basalts (EMORB) range from <1% melting of 10% enriched mantle to >15% melting of 100% enriched mantle. The presence of all three lava types along the seamount chain, and on a single seamount closest to the ridge axis, confirms that the sub‐ridge mantle is much more heterogeneous than is commonly observed on‐axis and heterogeneity exists over small spatial scales.
  • Article
    Lava geochemistry as a probe into crustal formation at the East Pacific Rise
    (The Oceanography Society, 2012-03) Perfit, Michael R. ; Wanless, V. Dorsey ; Ridley, W. Ian ; Klein, Emily M. ; Smith, Matthew C. ; Goss, Adam R. ; Hinds, Jillian S. ; Kutza, Scott W. ; Fornari, Daniel J.
    Basalt lavas comprise the greatest volume of volcanic rocks on Earth, and most of them erupt along the world's mid-ocean ridges (MORs). These MOR basalts (MORBs) are generally thought to be relatively homogeneous in composition over large segments of the global ridge system (e.g., Klein, 2005). However, detailed sampling of two different regions on the northern East Pacific Rise (EPR) and extensive analysis of the samples show that fine-scale mapping and sampling of the ridge axis can reveal significant variations in lava chemistry on both small spatial and short temporal scales. The two most intensely sampled sites within the EPR Integrated Study Site (ISS) lie on and off axis between 9°17'N and 10°N, and from a wide region centered around 9°N where two segments of the EPR overlap (see Fornari et al., 2012, Figure 3, in this issue). The chemical composition of erupted lavas, similar to the genotype of an organism, can be used by igneous petrologists to trace the evolution of magmas from the mantle to the seafloor. The extensive and detailed geochemical studies at the EPR highlight how a thorough understanding of the variability in lava compositions on small spatial scales (i.e., between lava flows) and large spatial scales (i.e., from segment center to segment end and including discontinuities in the ridge crest) can be used in combination with seafloor photography, lava morphology, and bathymetry to provide insights into the magmatic system that drives volcanism and influences hydrothermal chemistry and biology at a fast-spreading MOR.
  • Article
    Magmatic processes in developing oceanic crust revealed in a cumulate xenolith collected at the East Pacific Rise, 9°50′N
    (American Geophysical Union, 2006-12-12) Ridley, W. Ian ; Perfit, Michael R. ; Smith, Matthew C. ; Fornari, Daniel J.
    The petrology and geochemistry of a xenolith, a fragment of a melt-bearing cumulate, within a recently erupted mid-ocean ridge (MOR) lava flow provide information on petrogenetic processes occurring within the newly forming oceanic crust beneath the northern East Pacific Rise (NEPR). The xenolith reveals important petrologic information about MOR magmatic systems concerning (1) melt distribution in a crystal-dominated mush; (2) melt-crystal reactions within the mush; (3) the chemistry of melts that have contributed to the cumulate lithology; and (4) the chemistry of axial melts that enter the axial magma system. The xenolith was enclosed within a moderately primitive, normal mid-ocean ridge basalt (NMORB) erupted in 1991 within the neovolcanic zone of the NEPR, at approximately 9°50′N. The sample is a matrix-dominated, cumulate olivine anorthosite, composed of anorthite (An94-90) and bytownite (An89-70), intergranular olivine (Fo86±0.3), minor sulfide and spinel, and intergranular glass. Marginal corrosion of plagioclase, and possibly olivine, and internal remelting of plagioclase indicate syntexis. It is surmised that the pore volume was eviscerated several times with moderately primitive basaltic melts and reduced by intergranular crystallization of forsteritic olivine. The presence of anorthite as a cumulate phase in the xenolith and the observation of anorthite xenocrysts in NMORB lavas, and as a cumulate phase in ophiolite gabbros, indicate that Ca-rich melts that are not a part of the NMORB lineage play an important role in the construction of the oceanic crust.