Modeling nitrous oxide emissions from large-scale intensive cropping systems in the southern Amazon

Thumbnail Image
Date
2021-12-10
Authors
Costa, Ciniro
Galford, Gillian L.
Coe, Michael T.
Macedo, Marcia N.
Jankowski, KathiJo
O’Connell, Christine
Neill, Christopher
Alternative Title
Date Created
Location
DOI
10.3389/fsufs.2021.701416
Related Materials
Replaces
Replaced By
Keywords
GHG emission
Agriculture
Nitrogen fertilization management
Amazon
Food system
Abstract
Nitrogen (N) fertilizer use is rapidly intensifying on tropical croplands and has the potential to increase emissions of the greenhouse gas, nitrous oxide (N2O). Since about 2005 Mato Grosso (MT), Brazil has shifted from single-cropped soybeans to double-cropping soybeans with maize, and now produces 1.5% of the world's maize. This production shift required an increase in N fertilization, but the effects on N2O emissions are poorly known. We calibrated the process-oriented biogeochemical DeNitrification-DeComposition (DNDC) model to simulate N2O emissions and crop production from soybean and soybean-maize cropping systems in MT. After model validation with field measurements and adjustments for hydrological properties of tropical soils, regional simulations suggested N2O emissions from soybean-maize cropland increased almost fourfold during 2001–2010, from 1.1 ± 1.1 to 4.1 ± 3.2 Gg 1014 N-N2O. Model sensitivity tests showed that emissions were spatially and seasonably variable and especially sensitive to soil bulk density and carbon content. Meeting future demand for maize using current soybean area in MT might require either (a) intensifying 3.0 million ha of existing single soybean to soybean-maize or (b) increasing N fertilization to ~180 kg N ha−1 on existing 2.3 million ha of soybean-maize area. The latter strategy would release ~35% more N2O than the first. Our modifications of the DNDC model will improve estimates of N2O emissions from agricultural production in MT and other tropical areas, but narrowing model uncertainty will depend on more detailed field measurements and spatial data on soil and cropping management.
Description
© The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Costa Jr, C., Galford, G. L., Coe, M. T., Macedo, M., Jankowski, K., O’Connell, C., & Neill, C. Modeling nitrous oxide emissions from large-scale intensive cropping systems in the southern Amazon. Frontiers in Sustainable Food Systems, 5, (2021): 701416. https://doi.org/10.3389/fsufs.2021.701416.
Embargo Date
Citation
Costa Jr, C., Galford, G. L., Coe, M. T., Macedo, M., Jankowski, K., O’Connell, C., & Neill, C. (2021). Modeling nitrous oxide emissions from large-scale intensive cropping systems in the southern Amazon. Frontiers in Sustainable Food Systems, 5, 701416.
Cruises
Cruise ID
Cruise DOI
Vessel Name
Except where otherwise noted, this item's license is described as Attribution 4.0 International