Presentations and Papers

Permanent URI for this collection

This collection represents presentations made by members of the staff of the MBLWHOI Library or at the behest of the Library, and articles authored by members of the Library staff.

Browse

Recent Submissions

Now showing 1 - 20 of 196
  • Article
    Modeled flooding by tsunamis and a storm versus observed extent of coral erratics on Anegada, British Virgin Islands-further evidence for a great Caribbean earthquake six centuries ago
    (American Geophysical Union, 2024-03-14) Wei, Yong ; ten Brink, Uri S. ; Atwater, Brian F.
    Models of near-field tsunamis and an extreme hurricane provide further evidence for a great precolonial earthquake along the Puerto Rico Trench. The models are benchmarked to brain-coral boulders and cobbles on Anegada, 125 km south of the trench. The models are screened by their success in flooding the mapped sites of these erratics, which were emplaced some six centuries ago. Among 25 tsunami scenarios, 19 have megathrust sources and the rest posit normal faulting on the outer rise. The modeled storm, the most extreme of 15 hurricanes of category 5, produces tsunami-like bores from surf beat. In the tsunami scenarios, simulated flow depth is 1 m or more at all the clast sites, and 2 m or more at nearly all, given either a megathrust rupture 255 km long with 7.5 m of dip slip and M8.45, or an outer-rise rupture 130 km long with 11.4 m of dip slip and M8.17. By contrast, many coral clasts lie beyond the reach of simulated flooding from the extreme hurricane. The tsunami screening may underestimate earthquake size by neglecting trees and shrubs that likely impeded both the simulated flows and the observed clasts; and it may overestimate earthquake size by leaving coastal sand barriers intact. The screening results broadly agree with those from previously published tsunami simulations. In either successful scenario, the average recurrence interval spans thousands of years, and flooding on the nearest Caribbean shores begins within a half-hour.
  • Article
    Broadening inclusivity at sea
    (Frontiers Media, 2024-06-13) Wang, Lu ; Adams, Caitlin ; Fundis, Allison ; Hsiao, Janet ; Machado, Casey ; Malik, Mashkoor ; Quadara, Rachel ; Rodriguez, Coralie ; Soule, S. Adam ; Suhre, Kelley ; Wu, Liang ; Elmore, Aurora C.
    Ocean sciences in the U.S. remains a field with one of the lowest rates of diversity, having disproportionately low representation from marginalized groups, including Black, Asian, LatinX, Indigenous, and other people of color; LGBTQIA+ individuals; disabled persons; women; those with neurological differences; and those from low-income groups. With equity and inclusion in mind, recent efforts have been made to increase the number of ocean science professionals from marginalized groups through multiple entry points, including internships. However, there still exists a large gap between the diversity found in the general population and the diversity within ocean sciences. Perhaps one reason why this field continues to have lower diversity owes to the unique component of many oceanographic careers, which continues to present an especially high barrier for marginalized groups: participating in sea-going research expeditions. Herein, we have synthesized possible ways to prioritize the physical and emotional safety of marginalized ocean science professionals participating in a research expedition, including guidance on preparation, implementation, and providing support post-cruise. These suggestions are intended to be useful for the broader oceanographic research community to consider the safety and well-being of individuals from marginalized groups at sea, since the field of ocean sciences - like all fields - would greatly benefit from increased representation and diversity.
  • Article
    Particulate mercury export in the Central Pacific Ocean using 234Th 238U disequilibria
    (Elsevier, 2024-07-24) Umhau, Blaire P. ; Motta, Laura C. ; Blum, Joel D. ; Close, Hilary G. ; Drazen, Jeffrey C. ; Popp, Brian N. ; Benitez-Nelson, Claudia R.
    Mercury (Hg) is a potent neurotoxin that enters the food web and may contaminate commercial, recreational, subsistence, and ceremonial fish stocks. Understanding the pathways by which this contamination occurs in marine systems is thus an essential component of minimizing consumer health risk. Our knowledge of the biogeochemical cycling of mercury, however, is relatively limited. Temporal changes in sinking particulate mercury (PHg) fluxes throughout the upper 400 m were examined at Station ALOHA (22°N, 158°W) in the North Pacific Subtropical Gyre (NPSG) and spatially along a north-south transect to the Equator (17.5°N to 5°N x 155°W) using a combination of in situ pumps and Uranium-238/Thorium-234 disequilibria as a tracer of particle export. Our results indicate that Station ALOHA is characterized by seasonally variable export fluxes of PHg, with highest fluxes occurring in May (175 m, 346 pmol m−2 day−1), with the advent of summer zooplankton growth, and in September (400 m, 356 pmol m−2 day−1), coinciding with a diazotroph mediated summer export pulse. PHg fluxes in May and September were higher than those previously measured in the equatorial Pacific at 150 m and continued to be high (> 100 pmol Hg m−2 d−1) down to 400 m, thereby providing a significant source of Hg to the mesopelagic food web. In contrast to Station ALOHA, at 8 and 5°N, PHg fluxes attenuated rapidly with depth, and fluxes were generally lower, with a maximum flux of 86 pmol m−2 d−1 (5°N). Depth profiles at 8 and 5°N were significantly different from one another, with PHg fluxes higher throughout the water column at 5°N and characterized by a subsurface peak in Hg flux 3 times higher than at 8°N (86 vs. 29 pmol Hg m−2 d−1). Monomethylmercury (MeHg) fluxes (max = 1.09 ± 0.57 pmol m−2 d−1) and concentrations (max = 0.14 fmol L−1) comprised only a small percentage of the total PHg pool. These results suggest that PHg cycling significantly differed between the NPSG and near the equator at least during an El Niño year. At Station ALOHA, microbial reworking of small particles below the deep chlorophyll maximum coupled with changes in zooplankton grazing drive seasonal export variability. In contrast near the equator, low fluxes associated with low biological productivity result in significantly lower PHg transport to depth during an El Niño year.
  • Article
    Impacts of hydrostatic pressure on distributed temperature-sensing optical fibers for extreme ocean and ice environments
    (MDPI, 2024-07-02) Tyler, Scott W. ; Silvia, Matthew E. ; Jakuba, Michael V. ; Durante, Brian M. ; Winebrenner, Dale P.
    Optical fiber is increasingly used for both communication and distributed sensing of temperature and strain in environmental studies. In this work, we demonstrate the viability of unreinforced fiber tethers (bare fiber) for Raman-based distributed temperature sensing in deep ocean and deep ice environments. High-pressure testing of single-mode and multimode optical fiber showed little to no changes in light attenuation over pressures from atmospheric to 600 bars. Most importantly, the differential attenuation between Stokes and anti-Stokes frequencies, critical for the evaluation of distributed temperature sensing, was shown to be insignificantly affected by fluid pressures over the range of pressures tested for single-mode fiber, and only very slightly affected in multimode fiber. For multimode fiber deployments to ocean depths as great as 6000 m, the effect of pressure-dependent differential attenuation was shown to impact the estimated temperatures by only 0.15 °K. These new results indicate that bare fiber tethers, in addition to use for communication, can be used for distributed temperature or strain in fibers subjected to large depth (pressure) in varying environments such as deep oceans, glaciers and potentially the icy moons of Saturn and Jupiter.
  • Article
    Lagrangian Decomposition of the Atlantic Ocean Heat Transport at 26.5°N
    (American Geophysical Union, 2024-07-23) Tooth, Oliver J. ; Foukal, Nicholas P. ; Johns, William E. ; Johnson, Helen L. ; Wilson, Chris
    The Atlantic Meridional Overturning Circulation (AMOC) plays a critical role in the global climate system through the redistribution of heat, freshwater and carbon. At 26.5°N, the meridional heat transport has traditionally been partitioned geometrically into vertical and horizontal circulation cells; however, attributing these components to the AMOC and Subtropical Gyre (STG) flow structures remains widely debated. Using water parcel trajectories evaluated within an eddy-rich ocean hindcast, we present the first Lagrangian decomposition of the meridional heat transport at 26.5°N. We find that water parcels recirculating within the STG account for 37% (0.36 PW) of the total heat transport across 26.5°N, more than twice that of the classical horizontal gyre component (15%). Our findings indicate that STG heat transport cannot be meaningfully distinguished from that of the basin-scale overturning since water parcels cooled within the gyre subsequently feed the northward, subsurface limb of the AMOC.
  • Article
    Distribution and drivers of organic carbon sedimentation along the continental margins
    (American Geophysical Union, 2024-08-17) Tegler, Logan A. ; Horner, Tristan J. ; Galy, Valier ; Bent, Shavonna M. ; Wang, Yi ; Kim, Heather H. ; Mete, Oyku Z. ; Nielsen, Sune G.
    Organic carbon (OC) sedimentation in marine sediments is the largest long-term sink of atmospheric CO2 after silicate weathering. Understanding the mechanistic and quantitative aspects of OC delivery and preservation in marine sediments is critical for predicting the role of the oceans in modulating global climate. Yet, estimates of the global OC sedimentation in marginal settings span an order of magnitude, and the primary controls of OC preservation remain highly debated. Here, we provide the first global bottom-up estimate of OC sedimentation along the margins using a synthesis of literature data. We quantify both terrestrial- and marine-sourced OC fluxes and perform a statistical analysis to discern the key factors influencing their magnitude. We find that the margins host 23.2 ± 3.5 Tmol of OC sedimentation annually, with approximately 84% of marine origin. Accordingly, we calculate that only 2%–3% of OC exported from the euphotic zone escapes remineralization before sedimentation. Surprisingly, over half of all global OC sedimentation occurs below bottom waters with oxygen concentrations greater than 180 μM, while less than 4% occurs in settings with <50 μM oxygen. This challenges the prevailing paradigm that bottom-water oxygen (BWO) is the primary control on OC preservation. Instead, our statistical analysis reveals that water depth is the most significant predictor of OC sedimentation, surpassing all other factors investigated, including BWO levels and sea-surface chlorophyll concentrations. This finding suggests that the primary control on OC sedimentation is not production, but the ability of OC to resist remineralization during transit through the water column and while settling on the seafloor.
  • Article
    Biogeography and phylogeny of the scavenging amphipod genus Valettietta (Amphipoda: Alicelloidea), with descriptions of two new species from the abyssal Pacific Ocean
    (Oxford University Press, 2024-08-19) Stewart, Eva C. D. ; Bribiesca-Contreras, Guadalupe ; Weston, Johanna N. J. ; Glover, Adrian G. ; Horton, Tammy
    Valettietta Lincoln & Thurston, 1983 (Amphipoda: Alicelloidea) is an infrequently sampled genus of scavenging amphipod, with a known bathymetric range from 17–5467 m encompassing a variety of habitats from anchialine caves to abyssal plains. Molecular systematics studies have uncovered cryptic speciation in specimens collected from the abyssal Pacific, highlighting uncertainty in the description of Valettietta anacantha (Birstein & Vinogradov, 1963). Here, we apply an integrative taxonomic approach and describe two new species, Valettietta trottarum sp. nov. and Valettietta synchlys sp. nov., collected at abyssal depths in the Clarion-Clipperton Zone, Pacific Ocean. Both species can be distinguished by characters of the gnathopods, uropod 3, and the inner plate of the maxilliped. Further, molecular phylogenetic analyses of two mitochondrial (16S rDNA and COI) and two nuclear (Histone 3 and 28S rRNA) regions found both new species to form well-supported clades and allowed us to re-identify previously published records based on genetic species delimitation. The biogeography of Valettietta is discussed in light of these re-evaluated records, and a new taxonomic key to the genus is provided. These new taxa highlight the strength of applying an integrated taxonomic approach to uncover biodiversity, which is critical in regions being explored for potential industrial purposes.
  • Article
    Sustained increases in atmospheric oxygen and marine productivity in the Neoproterozoic and Palaeozoic eras
    (Nature Research, 2024-07-02) Stockey, Richard G. ; Cole, Devon B. ; Farrell, Úna C. ; Agic, Heda ; Boag, Thomas H. ; Brocks, Jochen J. ; Canfield, Don E. ; Cheng, Meng ; Crockford, Peter W. ; Cui, Huan ; Dahl, Tais W. ; Del Mouro, Lucas ; Dewing, Keith ; Dornbos, Stephen Q. ; Emmings, Joseph F. ; Gaines, Robert R. ; Gibson, Timothy M. ; Gill, Benjamin C. ; Gilleaudeau, Geoffrey J. ; Goldberg, Karin ; Guilbaud, Romain ; Halverson, Galen P. ; Hammarlund, Emma U. ; Hantsoo, Kalev G. ; Henderson, Miles A. ; Henderson, Charles M. ; Hodgskiss, Malcolm S. W. ; Jarrett, Amber J. M. ; Johnston, David T. ; Kabanov, Pavel ; Kimmig, Julien ; Knoll, Andrew H. ; Kunzmann, Marcus ; LeRoy, Matthew A. ; Li, Chao ; Loydell, David K. ; Macdonald, Francis A. ; Magnall, Joseph M. ; Mills, N. Tanner ; Och, Lawrence M. ; O'Connell, Brennan ; Pages, Anais ; Peters, Shanan E. ; Porter, Susannah M. ; Poulton, Simon W. ; Ritzer, Samantha R. ; Rooney, Alan D. ; Schoepfer, Shane D. ; Smith, Emily F. ; Strauss, Justin V. ; Uhlein, Gabriel Jube ; White, Tristan ; Wood, Rachel A. ; Woltz, Christina R. ; Yurchenko, Inessa A. ; Planavsky, Noah J. ; Sperling, Erik A.
    A geologically rapid Neoproterozoic oxygenation event is commonly linked to the appearance of marine animal groups in the fossil record. However, there is still debate about what evidence from the sedimentary geochemical record—if any—provides strong support for a persistent shift in surface oxygen immediately preceding the rise of animals. We present statistical learning analyses of a large dataset of geochemical data and associated geological context from the Neoproterozoic and Palaeozoic sedimentary record and then use Earth system modelling to link trends in redox-sensitive trace metal and organic carbon concentrations to the oxygenation of Earth’s oceans and atmosphere. We do not find evidence for the wholesale oxygenation of Earth’s oceans in the late Neoproterozoic era. We do, however, reconstruct a moderate long-term increase in atmospheric oxygen and marine productivity. These changes to the Earth system would have increased dissolved oxygen and food supply in shallow-water habitats during the broad interval of geologic time in which the major animal groups first radiated. This approach provides some of the most direct evidence for potential physiological drivers of the Cambrian radiation, while highlighting the importance of later Palaeozoic oxygenation in the evolution of the modern Earth system.
  • Article
    Harnessing (geoacoustic) uncertainty
    (Acoustical Society of America, 2024-07-01) Bonnel, Julien ; Lavery, Andone C.
    In 1979, in his The Hitchhiker's Guide to the Galaxy,1 Douglas Adams wrote, “we demand rigidly defined areas of doubt and uncertainty!” In a 2002 article in the Journal of the Acoustical Society of America, Stan Dosso delivered an impactful solution2 for geoacoustic inversion.
  • Article
    Optimizing seaweed biomass production—A two kelp solution
    (Springer, 2024-07-02) Stekoll, Michael ; Pryor, Alf ; Meyer, Alexandra ; Kite-Powell, Hauke L. ; Bailey, David ; Barbery, Kendall ; Goudey, Clifford A. ; Lindell, Scott ; Roberson, Loretta M. ; Yarish, Charles
    Interest in farming kelps has grown beyond using kelp for food, feed or biofuels. There is considerable interest in generating biomass from seaweed for use in bioplastics and other products that would substitute for petroleum-derived products. For these uses to be viable, large amounts of biomass are needed. Very large kelp farms can be expensive to build and maintain, leading to the need to optimize the biomass per unit area. Although close spacing of growlines can lead to poor growth, a viable approach may be to grow two species of kelps together: one that hangs down and one that is buoyant, growing up. This system would increase the spacing in three dimensions. In Alaska, Saccharina latissima is commonly grown hanging down from longlines. One of the buoyant Alaskan kelps is Nereocystis luetkeana. Because there are commercial uses for wild-harvested Nereocystis in Alaska, we undertook a preliminary trial in Kodiak, Alaska, that grew both Saccharina and Nereocystis in the same longline array. Closely spaced lines were seeded the first week of February 2023 and set at 3 m below the surface. The arrays were harvested in late June 2023. Total yields were greatest on the combined arrays, followed by the Nereocystis only and Saccharina only arrays. Despite having 45% fewer grow-lines, the total yield of the Nereocystis on the combined arrays was statistically similar to the Nereocystis only arrays. These results may have significance for large scale macroalgal production.
  • Article
    A simple model for multiple equilibria in ice-covered oceans
    (American Meteorological Society, 2024-09-18) Spall, Michael A.
    The existence of multiple equilibria (ice-covered and ice-free states) is explored using a set of coupled, nondimensional equations that describe the heat and salt balances in basins, such as the Arctic Ocean, that are subject to atmospheric forcing and two distinct water mass sources. Six nondimensional numbers describe the influences of atmospheric cooling, evaporation minus precipitation, solar radiation, atmospheric temperature, diapycnal mixing, and the temperature contrast between the two water masses. It is shown that multiple equilibria resulting from the dependence of albedo on ice cover exist over a wide range of parameter space, especially so in the weak mixing limit. Multiple equilibria can also occur if diapycnal mixing increases to O(10−4) m2 s−1 or larger under ice-free conditions due to enhanced upward mixing of warm, salty water from below. Sensitivities to various forcing parameters are discussed.
  • Article
    An overlooked component of the meridional overturning circulation
    (American Meteorological Society, 2024-09-01) Spall, Michael A.
    Upwelling along the western boundary of the major ocean basin subtropical gyres has been diagnosed in a wide range of ocean models and state estimates. This vertical transport is O(5 × 106) m3 s−1, which is on the same order of magnitude as the downward Ekman pumping across the subtropical gyres and zonally integrated meridional overturning circulation. Two approaches are used here to understand the reason for this upwelling and how it depends on oceanic parameters. First, a kinematic model that imposes a density gradient along the western boundary demonstrates that there must be upwelling with a maximum vertical transport at middepths in order to maintain geostrophic balance in the western boundary current. The second approach considers the vorticity budget near the western boundary in an idealized primitive equation model of the wind- and buoyancy-forced subtropical and subpolar gyres. It is shown that a pressure gradient along the western boundary results in bottom pressure torque that injects vorticity into the fluid. This is balanced on the boundary by lateral viscous fluxes that redistribute this vorticity across the boundary current. The viscous fluxes in the interior are balanced primarily by the vertical stretching of planetary vorticity, giving rise to upwelling within the boundary current. This process is found to be nearly adiabatic. Nonlinear terms and advection of planetary vorticity are also important locally but are not the ultimate drivers of the upwelling. Additional numerical model calculations demonstrate that the upwelling is a nonlocal consequence of buoyancy loss at high latitudes and thus represents an integral component of the meridional overturning circulation in depth space but not in density space.
  • Article
    Tolerance of juvenile lumpfish (Cyclopterus Lumpus) to high rearing densities
    (Wiley, 2024-07-29) Spada, Nathaniel N. ; Fairchild, Elizabeth A. ; Trushenski, Jesse T.
    Lumpfish (Cyclopterus lumpus) are raised as cleaner fish for controlling sea lice. Intensive rearing is complicated by fin nipping that occurs between juvenile conspecifics. Lumpfish density-dependent interactions are not well understood; therefore, the effects of rearing density for different fish size classes warranted evaluation. Two size classes (2- and 13-g) of juvenile lumpfish were stocked at four different rearing densities (40, 60, 70, and 90 g/L) with growth, survival, and fish aggression assessed over 8 weeks. Mean weight gain and specific growth rates ranged from 170% to 307% and 1.77% to 2.50%, respectively, depending on density treatments, for the 2-g fish, and from 286% to 471% and 2.42% to 3.10% for the 13-g fish. Growth was negatively correlated with density, with faster growth linked to lower densities. No mortality occurred in any treatment and significant fish aggression only occurred among the larger lumpfish in the higher rearing densities. Based on these findings, growth of 2-g lumpfish can be increased if reared at 40 g/L or slowed at 70 g/L without impacting aggression. For grow out of 13-g fish to ~70 g with minimal aggression, a 40 g/L rearing density is recommended for faster growth and 60 g/L for slower growth.
  • Article
    Recent advances in vertical temperature profiler instrumentation and flux estimation methods facilitate groundwater – Surface water exchange studies in environments with strong discharge zones
    (Elsevier, 2024-06-23) Sohn, Robert A. ; Briggs, Martin A. ; Rey, David M.
    Groundwater fluxes to many surface water systems are spatially heterogeneous with discharge focused into discrete, high-flux zones. Quantifying fluxes in these preferential discharge zones is critical to a range of surface water habitat and water quality processes, but characterization can be difficult due to short-scale spatial and temporal variability. Passive heat-as-a-tracer methods employing vertical temperature profiler (VTP) data can provide the necessary spatial and temporal resolution, but upward fluid flow strongly attenuates the thermal signals used for estimating fluxes. In preferential discharge zones it becomes difficult to measure the signals in the subsurface and the flux parameter can become insensitive in the analysis models, leading to large uncertainties. We use data from a high-flux site of contaminant-loaded groundwater discharge to the Quashnet River on Cape Cod, Massachusetts, USA, to demonstrate how recent advances in VTP instrumentation that allow for the acquisition of high-resolution (0.001 °C) temperature data at short (1 cm) offsets near the ground surface, combined with advances in flux estimation methods that exploit the information content of the high-resolution data, facilitate heat-as-a-tracer approaches for characterizing groundwater-surface water exchanges and make it possible to obtain accurate and statistically robust results in a preferential discharge zone with a specific discharge of ∼1 m/d.
  • Article
    Rice’s whale occurrence in the western Gulf of Mexico from passive acoustic recordings
    (Wiley, 2024-02-13) Soldevilla, Melissa S. ; Debich, Amanda J. ; Perez-Carballo, Itzel ; Jarriel, Sierra ; Frasier, Kaitlin E. ; Garrison, Lance P. ; Gracia, Adolfo ; Hildebrand, John A. ; Rosel, Patricia E. ; Serrano, Arturo
    Rice's whales (Balaenoptera ricei) are one of the most endangered marine mammal species in the world. Their known distribution is restricted to the Gulf of Mexico (GoMx) and basic knowledge of their ecology is limited. In their core distribution area along the northeastern GoMx shelf break (Rosel & Garrison, 2021), their abundance was estimated at 51 individuals, 95% CI [20, 130], based on line transect surveys conducted during 2017 and 2018 (Garrison et al., 2020). Most Rice's whale sightings and acoustic detections during the last 30 years occur in this area off the northwestern coast of Florida (Rice et al., 2014; Rosel et al., 2021; Širović et al., 2014; Soldevilla et al., 2017; Soldevilla, Ternus, et al., 2022). While visual sightings are rare (e.g., Rosel et al., 2021), recent passive acoustic detections during one year of recordings (Soldevilla, Debich, et al., 2022) establish that they routinely occur along the shelf break of the northwestern GoMx off Louisiana as well. Currently, Rice's whales are only known to occur within U.S. waters of the northern GoMx, although whaling records (Reeves et al., 2011) suggest they were distributed more broadly across the GoMx historically. Understanding their range and distribution is important for evaluating the impacts of human activities, including climate change, that threaten their long-term survival. Considering the high levels of anthropogenic activity throughout the GoMx (e.g., oil and gas exploration and extraction, fisheries, shipping, and oil spills), a comprehensive knowledge of the current distribution of Rice's whales is needed to understand the risk of these activities to the whales and to develop effective recovery and conservation strategies for this endangered species (Rosel et al., 2016).
  • Article
    Non-equilibrium scour evolution around an emerged structure exposed to a transient wave
    (MDPI, 2024-06-05) Sogut, Deniz Velioglu ; Sogut, Erdinc ; Farhadzadeh, Ali ; Hsu, Tian-Jian
    The present study evaluates the performance of two numerical approaches in estimating non-equilibrium scour patterns around a non-slender square structure subjected to a transient wave, by comparing numerical findings with experimental data. This study also investigates the impact of the structure’s positioning on bed evolution, analyzing configurations where the structure is either attached to the sidewall or positioned at the centerline of the wave flume. The first numerical method treats sediment particles as a distinct continuum phase, directly solving the continuity and momentum equations for both sediment and fluid phases. The second method estimates sediment transport using the quadratic law of bottom shear stress, yielding robust predictions of bed evolution through meticulous calibration and validation. The findings reveal that both methods underestimate vortex-induced near-bed vertical velocities. Deposits formed along vortex trajectories are overestimated by the first method, while the second method satisfactorily predicts the bed evolution beneath these paths. Scour holes caused by wave impingement tend to backfill as the flow intensity diminishes. The second method cannot sufficiently capture this backfilling, whereas the first method adequately reflects the phenomenon. Overall, this study highlights significant variations in the predictive capabilities of both methods in regard to the evolution of non-equilibrium scour at low Keulegan–Carpenter numbers.
  • Article
    Surface latent and sensible heat fluxes over the Pacific Sub-Arctic Ocean from saildrone observations and three global reanalysis products
    (Frontiers Media, 2024-07-12) Sivam, Subhatra ; Zhang, Chidong ; Zhang, Dongxiao ; Yu, Lisan ; Dressel, Isabella
    Sea surface latent and sensible heat fluxes are crucial components of the air-sea energy exchanges that influence the upper-ocean heat content and the marine atmospheric boundary layer. Due to the limited availability of in situ observations, assessing their impact on Arctic weather and climate has mainly been done using data assimilation products and numerical model simulations. The accuracy of the surface fluxes in numerical models are, however, largely unvalidated. Recent deployments of saildrones, remotely piloted uncrewed surface vehicles, can help bridge this data gap of in situ observations. This study represents an initial effort to validate sea surface latent and sensible heat fluxes over the Pacific sub-Arctic open ocean from three commonly used global reanalysis products (NASA MERRA2, ECMWF ERA5, NOAA CFSR2) against observations by saildrones. In general, fluxes from these reanalysis products and saildrone observations agree well, except for CFSR2 sensible heat fluxes, which exhibit systematic negative biases. Sporadic, very large (greater than two observed standard deviations) discrepancies between fluxes from the reanalysis products and observations do occur. These substantial discrepancies in the reanalysis products primarily result from errors in temperature for sensible heat fluxes and errors in both humidity and wind speed for latent heat fluxes. The results from this study suggest that the sea surface latent and sensible heat fluxes from MERRA2 and ERA5 are reliable in representing the mean features of air-sea exchanges in the sub-Arctic region. Nonetheless, their reliability is limited when used for studies of high-frequency variability, such as synoptic weather events.
  • Article
    Fiber-optic seismic sensing of vadose zone soil moisture dynamics
    (Nature Research, 2024-08-05) Shen, Zhichao ; Yang, Yan ; Fu, Xiaojing ; Adams, Kyra H. ; Biondi, Ettore ; Zhan, Zhongwen
    Vadose zone soil moisture is often considered a pivotal intermediary water reservoir between surface and groundwater in semi-arid regions. Understanding its dynamics in response to changes in meteorologic forcing patterns is essential to enhance the climate resiliency of our ecological and agricultural system. However, the inability to observe high-resolution vadose zone soil moisture dynamics over large spatiotemporal scales hinders quantitative characterization. Here, utilizing pre-existing fiber-optic cables as seismic sensors, we demonstrate a fiber-optic seismic sensing principle to robustly capture vadose zone soil moisture dynamics. Our observations in Ridgecrest, California reveal sub-seasonal precipitation replenishments and a prolonged drought in the vadose zone, consistent with a zero-dimensional hydrological model. Our results suggest a significant water loss of 0.25 m/year through evapotranspiration at our field side, validated by nearby eddy-covariance based measurements. Yet, detailed discrepancies between our observations and modeling highlight the necessity for complementary in-situ validations. Given the escalated regional drought risk under climate change, our findings underscore the promise of fiber-optic seismic sensing to facilitate water resource management in semi-arid regions.
  • Article
    Meltwater orientations modify seismic anisotropy in temperate ice
    (American Geophysical Union, 2024-07-04) Seltzer, Cassandra ; Llorens, Maria-Gema ; Cross, Andrew J.
    Seismology is increasingly used to infer the magnitude and direction of glacial ice flow. However, the effects of interstitial meltwater on seismic properties remain poorly constrained. Here, we extend previous studies on seismic anisotropy in temperate ices to consider the role of melt preferred orientation (MPO). We used the ELLE numerical toolbox to simulate microstructural shear deformation of temperate ice with variable MPO strength and orientation, and calculated the effective seismic properties of these numerical ice-melt aggregates. Our models demonstrate that even 3.5% melt volume is sufficient to rotate fast directions by up to 90°, to increase Vp anisotropy by up to +110%, and to modify Vs anisotropy by −9 to +36%. These effects are especially prominent at strain rates ≥3.17 × 10−12 s−1. MPO may thus obscure the geophysical signatures of temperate ice flow in regions of rapid ice discharge, and is therefore pivotal for understanding ice mass loss.
  • Article
    On the role of small estuaries in retaining buoyant particles
    (National Academy of Sciences, 2024-08-19) Bo, Tong ; Ralston, David K. ; Geyer, W. Rockwell ; McWilliams, James C.
    Estuaries, as connectors between land and ocean, have complex interactions of river and tidal flows that affect the transport of buoyant materials like floating plastics, oil spills, organic matter, and larvae. This study investigates surface-trapped buoyant particle transport in estuaries by using idealized and realistic numerical simulations along with a theoretical model. While river discharge and estuarine exchange flow are usually expected to export buoyant particles to the ocean over subtidal timescales, this study reveals a ubiquitous physical transport mechanism that causes retention of buoyant particles in estuaries. Tidally varying surface convergence fronts affect the aggregation of buoyant particles, and the coupling between particle aggregation and oscillatory tidal currents leads to landward transport at subtidal timescales. Landward transport and retention of buoyant particles is greater in small estuaries, while large estuaries tend to export buoyant particles to the ocean. A dimensionless width parameter incorporating the tidal radian frequency and lateral velocity distinguishes small and large estuaries at a transitional value of around 1. Additionally, higher river flow tends to shift estuaries toward seaward transport and export of buoyant particles. These findings provide insights into understanding the distribution of buoyant materials in estuaries and predicting their fate in the land–sea exchange processes.