Population genomics of rapidly invading lionfish in the Caribbean reveals signals of range expansion in the absence of spatial population structure.
Population genomics of rapidly invading lionfish in the Caribbean reveals signals of range expansion in the absence of spatial population structure.
Date
2019-02-10
Authors
Bors, Eleanor K.
Herrera, Santiago
Morris, James A. Jr
Shank, Timothy M.
Herrera, Santiago
Morris, James A. Jr
Shank, Timothy M.
Linked Authors
Person
Person
Person
Person
Alternative Title
Citable URI
As Published
Date Created
Location
DOI
10.1002/ece3.4952
Related Materials
Replaces
Replaced By
Keywords
distributional shifts
genetic drift
invasive species
natural selection and contemporary evolution
RAD‐sequencing
genetic drift
invasive species
natural selection and contemporary evolution
RAD‐sequencing
Abstract
Range expansions driven by global change and species invasions may have significant genomic, evolutionary, and ecological implications. During range expansions, strong genetic drift characterized by repeated founder events can result in decreased genetic diversity with increased distance from the center of the historic range, or the point of invasion. The invasion of the Indo‐Pacific lionfish, Pterois volitans, into waters off the US East Coast, Gulf of Mexico, and Caribbean Sea provides a natural system to study rapid range expansion in an invasive marine fish with high dispersal capabilities. We report results from 12,759 single nucleotide polymorphism loci sequenced by restriction enzyme‐associated DNA sequencing for nine P. volitans sampling areas in the invaded range, including Florida and other sites throughout the Caribbean, as well as mitochondrial control region D‐loop data. Analyses revealed low to no spatially explicit metapopulation genetic structure, which is partly consistent with previous finding of little structure within ocean basins, but partly divergent from initial reports of between‐basin structure. Genetic diversity, however, was not homogeneous across all sampled sites. Patterns of genetic diversity correlate with invasion pathway. Observed heterozygosity, averaged across all loci within a population, decreases with distance from Florida while expected heterozygosity is mostly constant in sampled populations, indicating population genetic disequilibrium correlated with distance from the point of invasion. Using an FST outlier analysis and a Bayesian environmental correlation analysis, we identified 256 and 616 loci, respectively, that could be experiencing selection or genetic drift. Of these, 24 loci were shared between the two methods.
Description
© The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bors, E. K., Herrera, S., Morris, J. A., Jr., & Shank, T. M. Population genomics of rapidly invading lionfish in the Caribbean reveals signals of range expansion in the absence of spatial population structure. Ecology and Evolution, 9(6), (2019):3306-3320, doi:10.1002/ece3.4952.
Embargo Date
Citation
Bors, E. K., Herrera, S., Morris, J. A., Jr., & Shank, T. M. (2019). Population genomics of rapidly invading lionfish in the Caribbean reveals signals of range expansion in the absence of spatial population structure. Ecology and Evolution, 9(6), 3306-3320.