Bors Eleanor K.

No Thumbnail Available
Last Name
Bors
First Name
Eleanor K.
ORCID

Search Results

Now showing 1 - 4 of 4
  • Preprint
    Cracking the egg : how a nested framework illuminates the challenges of comparative environmental analysis
    ( 2013-04-13) Bors, Eleanor K. ; Solomon, Susan
    Stratospheric ozone loss is on course to become a solved environmental problem, with all significant producing countries (including China and India) undertaking complete phaseouts of ozone-depleting substances. The universal concurrence and speed with which ozone loss has been addressed are sometimes heralded as signs that effective international agreements on other problems of the global commons are just around the corner. But progress on many other issues has been strikingly limited. Is ozone the exception, rather than the rule, and if so why? Here we present one way to illuminate why some environmental problems are more tractable than others by consideration of a “nested” (vs. non-nested) framework. We will refer to nesting as having three components: intellectual, societal, and institutional. Intellectual nesting refers to the academic communities that study the roots of the problem as well as possible solutions. Societal nesting refers to the sectors of human actors and activities that are associated with the problem. Institutional nesting describes the types of governance or management structures that could address the problem. We define a fully nested environmental problem as one for which the science of the problem is rooted within multiple, disparate disciplines, and for which the causes, impacts, and solutions are nested within different sectors of society and government. Within these definitions, we discuss marine biodiversity loss as an example of a deeply nested environmental problem, climate change as a mostly nested environmental problem, and ozone depletion as a much less nested environmental problem.
  • Article
    Patterns of deep-sea genetic connectivity in the New Zealand region : implications for management of benthic ecosystems
    (Public Library of Science, 2012-11-21) Bors, Eleanor K. ; Rowden, Ashley A. ; Maas, Elizabeth W. ; Clark, Malcolm R. ; Shank, Timothy M.
    Patterns of genetic connectivity are increasingly considered in the design of marine protected areas (MPAs) in both shallow and deep water. In the New Zealand Exclusive Economic Zone (EEZ), deep-sea communities at upper bathyal depths (<2000 m) are vulnerable to anthropogenic disturbance from fishing and potential mining operations. Currently, patterns of genetic connectivity among deep-sea populations throughout New Zealand’s EEZ are not well understood. Using the mitochondrial Cytochrome Oxidase I and 16S rRNA genes as genetic markers, this study aimed to elucidate patterns of genetic connectivity among populations of two common benthic invertebrates with contrasting life history strategies. Populations of the squat lobster Munida gracilis and the polychaete Hyalinoecia longibranchiata were sampled from continental slope, seamount, and offshore rise habitats on the Chatham Rise, Hikurangi Margin, and Challenger Plateau. For the polychaete, significant population structure was detected among distinct populations on the Chatham Rise, the Hikurangi Margin, and the Challenger Plateau. Significant genetic differences existed between slope and seamount populations on the Hikurangi Margin, as did evidence of population differentiation between the northeast and southwest parts of the Chatham Rise. In contrast, no significant population structure was detected across the study area for the squat lobster. Patterns of genetic connectivity in Hyalinoecia longibranchiata are likely influenced by a number of factors including current regimes that operate on varying spatial and temporal scales to produce potential barriers to dispersal. The striking difference in population structure between species can be attributed to differences in life history strategies. The results of this study are discussed in the context of existing conservation areas that are intended to manage anthropogenic threats to deep-sea benthic communities in the New Zealand region.
  • Thesis
    Spatiotemporal population genomics of marine species : invasion, expansion, and connectivity
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2017-02) Bors, Eleanor K.
    Every genome tells a story. This dissertation contains four such stories, focused on shared themes of marine population dynamics and rapid change, with an emphasis on invasive marine species. Biological invasions are often characterized by a range expansion, during which strong genetic drift is hypothesized to result in decreased genetic diversity with increased distance from the center of the historic range, or the point of invasion. In this dissertation, population genetic and genomic tools are used to approach complex and previously intractable fundamental questions pertaining to the non-equilibrium dynamics of species invasions and rapid range expansions in two invasive marine species: the lionfish, Pterois volitans; and the shrimp, Palaemon macrodactylus. Using thousands of loci sequenced with restriction enzyme associated DNA sequencing in these two systems, this research tests theoretical predictions of the genomic signatures of range expansions. Additionally, the first chapter elucidates patterns of population genetic connectivity for deep-sea invertebrates in the New Zealand region demonstrating intimate relationships between genetics, oceanographic currents, and life history traits. Invasive shrimp results extend our understanding of marine population connectivity to suggest that human-mediated dispersal may be as important— if not more important—than oceanographic and life history considerations in determining genetic connectivity during specific phases of marine invasions. In invasive populations of lionfish, measures of genomic diversity, including a difference between observed and expected heterozygosity, were found to correlate with distance from the point of introduction, even in the absence of spatial metapopulation genetic structure. These results indicate a signal of rapid range expansion. The final study in this dissertation uses an innovative temporal approach to explore observed genomic patterns in the lionfish. In all, this dissertation provides a broad perspective through the study of multiple species undergoing superficially parallel processes that, under more intense scrutiny, are found to be mechanistically unique. It is only through comparative approaches that predictable patterns of population dynamics will emerge.
  • Article
    Population genomics of rapidly invading lionfish in the Caribbean reveals signals of range expansion in the absence of spatial population structure.
    (Wiley Open Access, 2019-02-10) Bors, Eleanor K. ; Herrera, Santiago ; Morris, James A. Jr ; Shank, Timothy M.
    Range expansions driven by global change and species invasions may have significant genomic, evolutionary, and ecological implications. During range expansions, strong genetic drift characterized by repeated founder events can result in decreased genetic diversity with increased distance from the center of the historic range, or the point of invasion. The invasion of the Indo‐Pacific lionfish, Pterois volitans, into waters off the US East Coast, Gulf of Mexico, and Caribbean Sea provides a natural system to study rapid range expansion in an invasive marine fish with high dispersal capabilities. We report results from 12,759 single nucleotide polymorphism loci sequenced by restriction enzyme‐associated DNA sequencing for nine P. volitans sampling areas in the invaded range, including Florida and other sites throughout the Caribbean, as well as mitochondrial control region D‐loop data. Analyses revealed low to no spatially explicit metapopulation genetic structure, which is partly consistent with previous finding of little structure within ocean basins, but partly divergent from initial reports of between‐basin structure. Genetic diversity, however, was not homogeneous across all sampled sites. Patterns of genetic diversity correlate with invasion pathway. Observed heterozygosity, averaged across all loci within a population, decreases with distance from Florida while expected heterozygosity is mostly constant in sampled populations, indicating population genetic disequilibrium correlated with distance from the point of invasion. Using an FST outlier analysis and a Bayesian environmental correlation analysis, we identified 256 and 616 loci, respectively, that could be experiencing selection or genetic drift. Of these, 24 loci were shared between the two methods.