Herrera
Santiago
Herrera
Santiago
No Thumbnail Available
Search Results
Now showing
1 - 8 of 8
-
ArticleDiscovery of active off-axis hydrothermal vents at 9° 54’N East Pacific Rise(National Academy of Sciences, 2022-07-21) McDermott, Jill M. ; Parnell-Turner, Ross ; Barreyre, Thibaut ; Herrera, Santiago ; Downing, Connor C. ; Pittoors, Nicole C. ; Pehr, Kelden ; Vohsen, Samuel A. ; Dowd, William S. ; Wu, Jyun-Nai ; Marjanovic, Milena ; Fornari, Daniel J.Comprehensive knowledge of the distribution of active hydrothermal vent fields along midocean ridges is essential to understanding global chemical and heat fluxes and endemic faunal distributions. However, current knowledge is biased by a historical preference for on-axis surveys. A scarcity of high-resolution bathymetric surveys in off-axis regions limits vent identification, which implies that the number of vents may be underestimated. Here, we present the discovery of an active, high-temperature, off-axis hydrothermal field on a fast-spreading ridge. The vent field is located 750 m east of the East Pacific Rise axis and ∼7 km north of on-axis vents at 9° 50′N, which are situated in a 50- to 100-m-wide trough. This site is currently the largest vent field known on the East Pacific Rise between 9 and 10° N. Its proximity to a normal fault suggests that hydrothermal fluid pathways are tectonically controlled. Geochemical evidence reveals deep fluid circulation to depths only 160 m above the axial magma lens. Relative to on-axis vents at 9° 50′N, these off-axis fluids attain higher temperatures and pressures. This tectonically controlled vent field may therefore exhibit greater stability in fluid composition, in contrast to more dynamic, dike-controlled, on-axis vents. The location of this site indicates that high-temperature convective circulation cells extend to greater distances off axis than previously realized. Thorough high-resolution mapping is necessary to understand the distribution, frequency, and physical controls on active off-axis vent fields so that their contribution to global heat and chemical fluxes and role in metacommunity dynamics can be determined.
-
ArticleImproved biodiversity detection using a large-volume environmental DNA sampler with in situ filtration and implications for marine eDNA sampling strategies(Elsevier, 2022-09-22) Govindarajan, Annette F. ; McCartin, Luke ; Adams, Allan ; Allan, Elizabeth ; Belani, Abhimanyu ; Francolini, Rene ; Fujii, Justin ; Gomez-Ibañez, Daniel ; Kukulya, Amy ; Marin, Fredrick ; Tradd, Kaitlyn ; Yoerger, Dana R. ; McDermott, Jill M. ; Herrera, SantiagoMetabarcoding analysis of environmental DNA samples is a promising new tool for marine biodiversity and conservation. Typically, seawater samples are obtained using Niskin bottles and filtered to collect eDNA. However, standard sample volumes are small relative to the scale of the environment, conventional collection strategies are limited, and the filtration process is time consuming. To overcome these limitations, we developed a new large – volume eDNA sampler with in situ filtration, capable of taking up to 12 samples per deployment. We conducted three deployments of our sampler on the robotic vehicle Mesobot in the Flower Garden Banks National Marine Sanctuary in the northwestern Gulf of Mexico and collected samples from 20 to 400 m depth. We compared the large volume (∼40–60 L) samples collected by Mesobot with small volume (∼2 L) samples collected using the conventional CTD rosette – mounted Niskin bottle approach. We sequenced the V9 region of 18S rRNA, which detects a broad range of invertebrate taxa, and found that while both methods detected biodiversity changes associated with depth, our large volume samples detected approximately 66% more taxa than the CTD small volume samples. We found that the fraction of the eDNA signal originating from metazoans relative to the total eDNA signal decreased with sampling depth, indicating that larger volume samples may be especially important for detecting metazoans in mesopelagic and deep ocean environments. We also noted substantial variability in biological replicates from both the large volume Mesobot and small volume CTD sample sets. Both of the sample sets also identified taxa that the other did not – although the number of unique taxa associated with the Mesobot samples was almost four times larger than those from the CTD samples. Large volume eDNA sampling with in situ filtration, particularly when coupled with robotic platforms, has great potential for marine biodiversity surveys, and we discuss practical methodological and sampling considerations for future applications.•A large-volume eDNA sampler was developed and deployed on the midwater robot Mesobot.•Compared to conventional small-volume samples, the sampler detected more metazoan taxa.•Both sampling approaches detected community changes with depth on the scale of 10's of meters.•The metazoan eDNA signal declined with depth.•Large volume sampling may be especially important in the mesopelagic and deep sea.
-
ArticleExploring the ecology of deep-sea hydrothermal vents in a metacommunity framework(Frontiers Media, 2018-02-21) Mullineaux, Lauren S. ; Metaxas, Anna ; Beaulieu, Stace E. ; Bright, Monika ; Gollner, Sabine ; Grupe, Benjamin ; Herrera, Santiago ; Kellner, Julie B. ; Levin, Lisa A. ; Mitarai, Satoshi ; Neubert, Michael G. ; Thurnherr, Andreas M. ; Tunnicliffe, Verena ; Watanabe, Hiromi K. ; Won, Yong-JinSpecies inhabiting deep-sea hydrothermal vents are strongly influenced by the geological setting, as it provides the chemical-rich fluids supporting the food web, creates the patchwork of seafloor habitat, and generates catastrophic disturbances that can eradicate entire communities. The patches of vent habitat host a network of communities (a metacommunity) connected by dispersal of planktonic larvae. The dynamics of the metacommunity are influenced not only by birth rates, death rates and interactions of populations at the local site, but also by regional influences on dispersal from different sites. The connections to other communities provide a mechanism for dynamics at a local site to affect features of the regional biota. In this paper, we explore the challenges and potential benefits of applying metacommunity theory to vent communities, with a particular focus on effects of disturbance. We synthesize field observations to inform models and identify data gaps that need to be addressed to answer key questions including: (1) what is the influence of the magnitude and rate of disturbance on ecological attributes, such as time to extinction or resilience in a metacommunity; (2) what interactions between local and regional processes control species diversity, and (3) which communities are “hot spots” of key ecological significance. We conclude by assessing our ability to evaluate resilience of vent metacommunities to human disturbance (e.g., deep-sea mining). Although the resilience of a few highly disturbed vent systems in the eastern Pacific has been quantified, these values cannot be generalized to remote locales in the western Pacific or mid Atlantic where disturbance rates are different and information on local controls is missing.
-
ArticlePredicting RAD-seq marker numbers across the eukaryotic tree of life(Oxford University Press, 2015-11-03) Herrera, Santiago ; Reyes-Herrera, Paula H. ; Shank, Timothy M.High-throughput sequencing of reduced representation libraries obtained through digestion with restriction enzymes—generically known as restriction site associated DNA sequencing (RAD-seq)—is a common strategy to generate genome-wide genotypic and sequence data from eukaryotes. A critical design element of any RAD-seq study is knowledge of the approximate number of genetic markers that can be obtained for a taxon using different restriction enzymes, as this number determines the scope of a project, and ultimately defines its success. This number can only be directly determined if a reference genome sequence is available, or it can be estimated if the genome size and restriction recognition sequence probabilities are known. However, both scenarios are uncommon for nonmodel species. Here, we performed systematic in silico surveys of recognition sequences, for diverse and commonly used type II restriction enzymes across the eukaryotic tree of life. Our observations reveal that recognition sequence frequencies for a given restriction enzyme are strikingly variable among broad eukaryotic taxonomic groups, being largely determined by phylogenetic relatedness. We demonstrate that genome sizes can be predicted from cleavage frequency data obtained with restriction enzymes targeting “neutral” elements. Models based on genomic compositions are also effective tools to accurately calculate probabilities of recognition sequences across taxa, and can be applied to species for which reduced representation data are available (including transcriptomes and neutral RAD-seq data sets). The analytical pipeline developed in this study, PredRAD (https://github.com/phrh/PredRAD), and the resulting databases constitute valuable resources that will help guide the design of any study using RAD-seq or related methods.
-
ArticlePopulation genomics of rapidly invading lionfish in the Caribbean reveals signals of range expansion in the absence of spatial population structure.(Wiley Open Access, 2019-02-10) Bors, Eleanor K. ; Herrera, Santiago ; Morris, James A. Jr ; Shank, Timothy M.Range expansions driven by global change and species invasions may have significant genomic, evolutionary, and ecological implications. During range expansions, strong genetic drift characterized by repeated founder events can result in decreased genetic diversity with increased distance from the center of the historic range, or the point of invasion. The invasion of the Indo‐Pacific lionfish, Pterois volitans, into waters off the US East Coast, Gulf of Mexico, and Caribbean Sea provides a natural system to study rapid range expansion in an invasive marine fish with high dispersal capabilities. We report results from 12,759 single nucleotide polymorphism loci sequenced by restriction enzyme‐associated DNA sequencing for nine P. volitans sampling areas in the invaded range, including Florida and other sites throughout the Caribbean, as well as mitochondrial control region D‐loop data. Analyses revealed low to no spatially explicit metapopulation genetic structure, which is partly consistent with previous finding of little structure within ocean basins, but partly divergent from initial reports of between‐basin structure. Genetic diversity, however, was not homogeneous across all sampled sites. Patterns of genetic diversity correlate with invasion pathway. Observed heterozygosity, averaged across all loci within a population, decreases with distance from Florida while expected heterozygosity is mostly constant in sampled populations, indicating population genetic disequilibrium correlated with distance from the point of invasion. Using an FST outlier analysis and a Bayesian environmental correlation analysis, we identified 256 and 616 loci, respectively, that could be experiencing selection or genetic drift. Of these, 24 loci were shared between the two methods.
-
ArticleAdvances in environmental DNA sampling for Observing Ocean Twilight Zone animal diversity(Oceanography Society, 2023-01-19) Govindarajan, Annette F. ; Adams, Allan ; Allan, Elizabeth ; Herrera, Santiago ; Lavery, Andone ; Llopiz, Joel ; McCartin, Luke ; Yoerger, Dana R. ; Zhang, WeifengThe ocean’s vast twilight, or mesopelagic, zone (200–1,000 m depth) harbors immense biomass consisting of myriad poorly known and unique animal species whose quantity and diversity are likely considerably underestimated. As they facilitate the movement of carbon from surface waters to the deep sea through feeding and migratory behaviors, ocean twilight zone (OTZ) animals are vital to regulating Earth’s climate (Ducklow et al., 2001). However, anthropogenic threats, such as climate change, ocean acidification, pollution, and overfishing pose an imminent threat to OTZ animals. Long-term spatially and temporally intensive observations are essential to our understanding of biodiversity in the OTZ, to resolving global carbon cycles, and to monitoring ocean health. Environmental DNA (eDNA) analysis, which involves studying the trace genetic signatures of organisms (Figure 1), is a promising approach to filling this urgent need. eDNA can be sampled and diagnostic genetic markers (“barcodes”) can be sequenced in order to detect the animals inhabiting a given water parcel. Other laboratory protocols (e.g., quantitative PCR, or “qPCR” and “digital droplet PCR”) can be applied to facilitate quantitative assessments of specific target species (Eble et al., 2020). In seagoing oceanographic research, eDNA assessment is transitioning from being considered an experimental approach to becoming an established routine that can be scaled up to match ocean observing needs.
-
ArticleCorals and sponges are hotspots of reactive oxygen species in the deep sea(National Academy of Sciences, 2023-11-15) Taenzer, Lina ; Wankel, Scott D. ; Kapit, Jason ; Pardis, William A. ; Herrera, Santiago ; Auscavitch, Steven R. ; Grabb, Kalina C. ; Cordes, Erik ; Hansel, Colleen M.Reactive oxygen species (ROS) are central to diverse biological processes through which organisms respond to and interact with their surroundings. Yet, a lack of direct measurements limits our understanding of the distribution of ROS in the ocean. Using a recently developed in situ sensor, we show that deep-sea corals and sponges produce the ROS superoxide, revealing that benthic organisms can be sources and hotspots of ROS production in these environments. These findings confirm previous contentions that extracellular superoxide production by corals can be independent of the activity of photosynthetic symbionts. The discovery of deep-sea corals and sponges as sources of ROS has implications for the physiology and ecology of benthic organisms and introduces a previously overlooked suite of redox reactants at depth.
-
ArticleAmeripathidae, a new family of antipatharian corals (Cnidaria, Anthozoa, Hexacorallia, Antipatharia)(Pensoft Publishers, 2024-05-31) Horowitz, Jeremy ; Opresko, Dennis M. ; Herrera, Santiago ; Hansel, Colleen M. ; Quattrini, Andrea M.A new family of antipatharian corals, Ameripathidae (Cnidaria: Anthozoa: Antipatharia), is established for Ameripathes pseudomyriophylla Opresko & Horowitz, gen. et sp. nov. The new family resembles Myriopathidae and Stylopathidae in terms of the morphology of the polyps and tentacles and the pinnulate branching of the corallum. Phylogenetic analysis using a genomic data set of 741 conserved element loci indicates that the new family is sister to a clade containing the Myriopathidae, Stylopathidae, Antipathidae, and Aphanipathidae.