Sulfur isotope measurement of sulfate and sulfide by high-resolution MC-ICP-MS
Sulfur isotope measurement of sulfate and sulfide by high-resolution MC-ICP-MS
Date
2008-04
Authors
Craddock, Paul R.
Rouxel, Olivier J.
Ball, Lary A.
Bach, Wolfgang
Rouxel, Olivier J.
Ball, Lary A.
Bach, Wolfgang
Linked Authors
Alternative Title
Citable URI
As Published
Date Created
Location
DOI
Related Materials
Replaces
Replaced By
Keywords
Sulfur
Isotope composition
ICP
Mass spectrometry
Laser ablation
Isotope composition
ICP
Mass spectrometry
Laser ablation
Abstract
We have developed a technique for the accurate and precise determination of 34S/32S isotope
ratios (δ34S) in sulfur-bearing minerals using solution and laser ablation multiple-collector
inductively coupled plasma mass spectrometry (MC-ICP-MS). We have examined and
determined rigorous corrections for analytical difficulties such as instrumental mass bias,
unresolved isobaric interferences, blanks, and laser ablation- and matrix-induced isotopic
fractionation. Use of high resolution sector-field mass spectrometry removes major isobaric
interferences from O2+. Standard–sample bracketing is used to correct for the instrumental mass
bias of unknown samples. Blanks on sulfur masses arising from memory effects and residual
oxygen-tailing are typically minor (< 0.2‰, within analytical error), and are mathematically
removed by on-peak zero subtraction and by bracketing of samples with standards determined at
the same signal intensity (within 20%). Matrix effects are significant (up to 0.7‰) for matrix
compositions relevant to many natural sulfur-bearing minerals. For solution analysis, sulfur
isotope compositions are best determined using purified (matrix-clean) sulfur standards and
sample solutions using the chemical purification protocol we present. For in situ analysis, where
the complex matrix cannot be removed prior to analysis, appropriately matrix-matching
standards and samples removes matrix artifacts and yields sulfur isotope ratios consistent with
conventional techniques using matrix-clean analytes. Our method enables solid samples to be
calibrated against aqueous standards; a consideration that is important when certified,
isotopically-homogeneous and appropriately matrix-matched solid standards do not exist.
Further, bulk and in situ analyses can be performed interchangeably in a single analytical session
because the instrumental setup is identical for both. We validated the robustness of our analytical
method through multiple isotope analyses of a range of reference materials and have compared
these with isotope ratios determined using independent techniques. Long-term reproducibility of
S isotope compositions is typically 0.20‰ and 0.45‰ (2σ) for solution and laser analysis,
respectively. Our method affords the opportunity to make accurate and relatively precise S
isotope measurement for a wide range of sulfur-bearing materials, and is particularly appropriate
for geologic samples with complex matrix and for which high-resolution in situ analysis is
critical.
Description
Author Posting. © Elsevier B.V. , 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Chemical Geology 253 (2008): 102-113, doi:10.1016/j.chemgeo.2008.04.017.