Rouxel Olivier J.

No Thumbnail Available
Last Name
Rouxel
First Name
Olivier J.
ORCID

Search Results

Now showing 1 - 14 of 14
  • Preprint
    Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea : indicators of sub-seafloor hydrothermal processes in back-arc basins
    ( 2010-05-02) Craddock, Paul R. ; Bach, Wolfgang ; Seewald, Jeffrey S. ; Rouxel, Olivier J. ; Reeves, Eoghan P. ; Tivey, Margaret K.
    Rare earth element (REE) concentrations are reported for a large suite of seafloor vent fluids from four hydrothermal systems in the Manus back–arc basin (Vienna Woods, PACMANUS, DESMOS and SuSu Knolls vent areas). Sampled vent fluids show a wide range of absolute REE concentrations and chondrite–normalized (REEN) distribution patterns (LaN/SmN ~ 0.6 – 11; LaN/YbN ~ 0.6 – 71; EuN/Eu*N ~ 1 – 55). REEN distribution patterns in different vent fluids range from light–REE enriched, to mid– and heavy–REE enriched, to flat, and have a range of positive Eu–anomalies. This heterogeneity contrasts markedly with relatively uniform REEN distribution patterns of mid–ocean ridge hydrothermal fluids. In Manus Basin fluids, aqueous REE compositions do not inherit directly or show a clear relationship with the REE compositions of primary crustal rocks with which hydrothermal fluids interact. These results suggest that the REEs are less sensitive indicators of primary crustal rock composition despite crustal rocks being the dominant source of REEs in submarine hydrothermal fluids. In contrast, differences in aqueous REE compositions are consistently correlated with differences in fluid pH and ligand (chloride, fluoride and sulfate) concentrations. Our results suggest that the REEs can be used as an indicator of the type of magmatic acid volatile (i.e., presence of HF, SO2) degassing in submarine hydrothermal systems. Additional fluid data suggest that near seafloor mixing between high–temperature hydrothermal fluid and locally entrained seawater at many vent areas in the Manus Basin causes anhydrite precipitation. Anhydrite effectively incorporates REE and likely affects measured fluid REE concentrations, but does not affect their relative distributions.
  • Article
    Glacial influence on the geochemistry of riverine iron fluxes to the Gulf of Alaska and effects of deglaciation
    (American Geophysical Union, 2011-08-25) Schroth, Andrew W. ; Crusius, John ; Chever, Fanny ; Bostick, Benjamin C. ; Rouxel, Olivier J.
    Riverine iron (Fe) derived from glacial weathering is a critical micronutrient source to ecosystems of the Gulf of Alaska (GoA). Here we demonstrate that the source and chemical nature of riverine Fe input to the GoA could change dramatically due to the widespread watershed deglaciation that is underway. We examine Fe size partitioning, speciation, and isotopic composition in tributaries of the Copper River which exemplify a long-term GoA watershed evolution from one strongly influenced by glacial weathering to a boreal-forested watershed. Iron fluxes from glacierized tributaries bear high suspended sediment and colloidal Fe loads of mixed valence silicate species, with low concentrations of dissolved Fe and dissolved organic carbon (DOC). Iron isotopic composition is indicative of mechanical weathering as the Fe source. Conversely, Fe fluxes from boreal-forested systems have higher dissolved Fe concentrations corresponding to higher DOC concentrations. Iron colloids and suspended sediment consist of Fe (hydr)oxides and organic complexes. These watersheds have an iron isotopic composition indicative of an internal chemical processing source. We predict that as the GoA watershed evolves due to deglaciation, so will the source, flux, and chemical nature of riverine Fe loads, which could have significant ramifications for Alaskan marine and freshwater ecosystems.
  • Preprint
    S-33 constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides
    ( 2006-11-14) Ono, Shuhei ; Shanks, Wayne C. ; Rouxel, Olivier J. ; Rumble, Douglas
    Sulfide sulfur in mid-oceanic ridge hydrothermal vents is derived from leaching of basaltic-sulfide and seawater-derived sulfate that is reduced during high temperature water rock interaction. Conventional sulfur isotope studies, however, are inconclusive about the mass-balance between the two sources because 34S/32S ratios of vent fluid H2S and chimney sulfide minerals may reflect not only the mixing ratio but also isotope exchange between sulfate and sulfide. Here, we show that high-precision analysis of S-33 can provide a unique constraint because isotope mixing and isotope exchange result in different Δ33S (≡ δ33S – 0.515 δ34S) values of up to 0.04 ‰ even if δ34S values are identical. Detection of such small Δ33S differences is technically feasible by using the SF6 dual-inlet mass-spectrometry protocol that has been improved to achieve a precision as good as 0.006 ‰ (2σ). Sulfide minerals (marcasite, pyrite, chalcopyrite, and sphalerite) and vent H2S collected from four active seafloor hydrothermal vent sites, East Pacific Rise (EPR) 9-10° N, 13° N, and 21° S and Mid-Atlantic Ridge (MAR) 37° N yield Δ33S values ranging from –0.002 to 0.033 and δ34S from –0.5 to 5.3 ‰. The combined δ34S and Δ33S systematics reveal that 73 to 89 % of vent sulfides are derived from leaching from basaltic sulfide and only 11 to 27 % from seawater-derived sulfate. Pyrite from EPR 13° N and marcasite from MAR 37° N are in isotope disequilibrium not only in δ34S but also in Δ33S with respect to associated sphalerite and chalcopyrite, suggesting non-equilibrium sulfur isotope exchange between seawater sulfate and sulfide during pyrite precipitation. Seafloor hydrothermal vent sulfides are characterized by low Δ33S values compared with biogenic sulfides, suggesting little or no contribution of sulfide from microbial sulfate reduction into hydrothermal sulfides at sediment-free mid-oceanic ridge systems. We conclude that 33S is an effective new tracer for interplay among seawater, oceanic crust and microbes in subseafloor hydrothermal sulfur cycles.
  • Preprint
    Sulfur isotope evidence for microbial sulfate reduction in altered oceanic basalts at ODP Site 801
    ( 2008-01-08) Rouxel, Olivier J. ; Ono, Shuhei ; Alt, Jeffrey C. ; Rumble, Douglas ; Ludden, John
    The subsurface biosphere in the basaltic ocean crust is potentially of major importance in affecting chemical exchange between the ocean and lithosphere. Alteration of the oceanic crust commonly yields secondary pyrite that are depleted in 34S relative to igneous sulfides. Although these 34S depleted sulfur isotope ratios may point to signatures of biological fractionation, previous interpretations of sulfur isotope fractionation in altered volcanic rocks have relied on abiotic fractionation processes between intermediate sulfur species formed during basalt alteration. Here, we report results for multiple-S isotope (32S,33S,34S) compositions of altered basalts at ODP Site 801 in the western Pacific and provide evidence for microbial sulfate reduction within the volcanic oceanic crust. In-situ ion-microprobe analyses of secondary pyrite in basement rocks show a large range of δ34S values, between –45‰ and 1‰, whereas bulk rock δ34S analyses yield a more restricted range of –15.8 to 0.9‰. These low and variable δ34S values, together with bulk rock S concentrations ranging from 0.02% up to 1.28% are consistent with loss of magmatic primary mono-sulfide and addition of secondary sulfide via microbial sulfate reduction. High-precision multiple-sulfur isotope (32S/33S/34S) analyses suggest that secondary sulfides exhibit mass-dependent equilibrium fractionation relative to seawater sulfate in both δ33S and δ34S values. These relationships are explained by bacterial sulfate reduction proceeding at very low metabolic rates. The determination of the S-isotope composition of bulk altered oceanic crust demonstrates that S-based metabolic activity of subsurface life in oceanic basalt is widespread, and can affect the global S budget at the crust-seawater interface.
  • Article
    GEOTRACES IC1 (BATS) contamination-prone trace element isotopes Cd, Fe, Pb, Zn, Cu, and Mo intercalibration
    (Association for the Sciences of Limnology and Oceanography, 2012-09) Boyle, Edward A. ; John, Seth G. ; Abouchami, Wafa ; Adkins, Jess F. ; Echegoyen-Sanz, Yolanda ; Ellwood, Michael J. ; Flegal, A. Russell ; Fornace, Kyrstin L. ; Gallon, Celine ; Galer, Stephen J. G. ; Gault-Ringold, Melanie ; Lacan, Francois ; Radic, Amandine ; Rehkamper, Mark ; Rouxel, Olivier J. ; Sohrin, Yoshiki ; Stirling, Claudine H. ; Thompson, Claire ; Vance, Derek ; Xue, Zichen ; Zhao, Ye
    We report data on the isotopic composition of cadmium, copper, iron, lead, zinc, and molybdenum at the GEOTRACES IC1 BATS Atlantic intercalibration station. In general, the between lab and within-lab precisions are adequate to resolve global gradients and vertical gradients at this station for Cd, Fe, Pb, and Zn. Cd and Zn isotopes show clear variations in the upper water column and more subtle variations in the deep water; these variations are attributable, in part, to progressive mass fractionation of isotopes by Rayleigh distillation from biogenic uptake and/or adsorption. Fe isotope variability is attributed to heavier crustal dust and hydrothermal sources and light Fe from reducing sediments. Pb isotope variability results from temporal changes in anthropogenic source isotopic compositions and the relative contributions of U.S. and European Pb sources. Cu and Mo isotope variability is more subtle and close to analytical precision. Although the present situation is adequate for proceeding with GEOTRACES, it should be possible to improve the within-lab and between-lab precisions for some of these properties.
  • Preprint
    Surface-generated mesoscale eddies transport deep-sea products from hydrothermal vents
    ( 2011-03) Adams, Diane K. ; McGillicuddy, Dennis J. ; Zamudio, Luis ; Thurnherr, Andreas M. ; Liang, Xinfeng ; Rouxel, Olivier J. ; German, Christopher R. ; Mullineaux, Lauren S.
    Atmospheric forcing, which is known to have a strong influence on surface ocean dynamics and production, is typically not considered in studies of the deep sea. Our observations and models demonstrate an unexpected influence of surface-generated mesoscale eddies in the transport of hydrothermal vent efflux and of vent larvae away from the northern East Pacific Rise. Transport by these deep-reaching eddies provides a mechanism for spreading the hydrothermal chemical and heat-flux into the deep-ocean interior and for dispersing propagules hundreds of kilometers between isolated and ephemeral communities. Since the eddies interacting with the East Pacific Rise are formed seasonally and are sensitive to phenomena such as El Niño, they have the potential to introduce seasonal to interannual atmospheric variations into the deep sea.
  • Preprint
    Iron isotope fractionation in subterranean estuaries
    ( 2008-04-25) Rouxel, Olivier J. ; Sholkovitz, Edward R. ; Charette, Matthew A. ; Edwards, Katrina J.
    Dissolved Fe concentrations in subterranean estuaries, like their river-seawater counterparts, are strongly controlled by non-conservative behavior during mixing of groundwater and seawater in coastal aquifers. Previous studies at a subterranean estuary of Waquoit Bay on Cape Cod, USA demonstrate extensive precipitation of groundwater-borne dissolved ferrous iron and subsequent accumulation of iron oxides onto subsurface sands. Waquoit Bay is thus an excellent natural laboratory to assess the mechanisms of Fe-isotope fractionation in redoxstratified environments and determine potential Fe-isotope signatures of groundwater sources to coastal seawater. Here, we report Fe isotope compositions of iron-coated sands and porewaters beneath the intertidal zone of Waquoit Bay. The distribution of pore water Fe shows two distinct sources of Fe: one residing in the upward rising plume of Fe-rich groundwater and the second in the salt-wedge zone of pore water. The groundwater source has high Fe(II) concentration consistent with anoxic conditions and yield δ56Fe values between 0.3 and –1.3‰. In contrast, sediment porewaters occurring in the mixing zone of the subterranean estuary have very low δ56Fe values down to –5‰. These low δ56Fe values reflect Fe-redox cycling and result from the preferential retention of heavy Fe-isotopes onto newly formed Fe-oxyhydroxides. Analysis of Feoxides precipitated onto subsurface sands in two cores from the subterranean estuary revealed strong δ56Fe and Fe concentration gradients over less than 2m, yielding an overall range of δ56Fe values between –2 and 1.5‰. The relationship between Fe concentration and δ56Fe of Fe-rich sands can be modeled by the progressive precipitation of Fe-oxides along fluid flow through the subterranean estuary. These results demonstrate that large-scale Fe isotope fractionation (up to 5‰) can occur in subterranean estuaries, which could lead to coastal seawater characterized by very low δ56Fe values relative to river values.
  • Preprint
    Iron isotope systematics in estuaries : the case of North River, Massachusetts (USA)
    ( 2009-04) Escoube, Raphaelle ; Rouxel, Olivier J. ; Sholkovitz, Edward R. ; Donard, Olivier F. X.
    Recent studies have suggested that rivers may present an isotopically light Fe source to the oceans. Since the input of dissolved iron from river water is generally controlled by flocculation processes that occur during estuarine mixing, it is important to investigate potential fractionation of Fe-isotopes during this process. In this study, we investigate the influence of the flocculation of Fe-rich colloids on the iron isotope composition of pristine estuarine waters and suspended particles. The samples were collected along a salinity gradient from the fresh water to the ocean in the North River estuary (MA, USA). Estuarine samples were filtered at 0.22 μm and the iron isotope composition of the two fractions (dissolved and particles) were analyzed using high resolution MC-ICP-MS after chemical purification. Dissolved iron results show positive δ56Fe values (with an average of 0.43 ± 0.04 ‰) relative to the IRMM-14 standard and do not display any relationships with salinity or with percentage of colloid flocculation. The iron isotopic composition of the particles suspended in fresh water is characterized by more negative δ56Fe values than for dissolved Fe and correlate with the percentage of Fe flocculation. Particulate δ56Fe values vary from -0.09‰ at no flocculation to ~ 0.1‰ at the flocculation maximum, which reflect mixing effects between river-borne particles, lithogenic particles derived from coastal seawaters and newly precipitated colloids. Since the process of flocculation produces minimal Fe-isotope fractionation in the dissolved Fe pool, we suggest that the pristine iron isotope composition of fresh water is preserved during estuarine mixing and that the value of the global riverine source into the ocean can be identified from the fresh water values. However, this study also suggests that δ56Fe composition of rivers can also be characterized by more positive δ56Fe values (up to 0.3 per mil) relative to the crust than previously reported. In order to improve our current understanding of the oceanic iron isotope cycling, further work is now required to determine the processes controlling the fractionation of Fe isotopes during continental run-off.
  • Preprint
    Time-series analysis of two hydrothermal plumes at 9°50′N East Pacific Rise reveals distinct, heterogeneous bacterial populations
    ( 2011-12-05) Sylvan, Jason B. ; Pyenson, Benjamin C. ; Rouxel, Olivier J. ; German, Christopher R. ; Edwards, Katrina J.
    We deployed sediment traps adjacent to two active hydrothermal vents at 9°50’N on the East Pacific Rise (EPR) to assess variability in bacterial community structure associated with plume particles on the time scale of weeks to months, to determine if an endemic population of plume microbes exists, and to establish ecological relationships between bacterial populations and vent chemistry. Automated rRNA intergenic spacer analysis (ARISA) indicated there are separate communities at the two different vents and temporal community variations between each vent. Correlation analysis between chemistry and microbiology indicated that shifts in the coarse particulate (>1 mm) Fe/(Fe+Mn+Al), Cu, V, Ca, Al, 232Th, and Ti as well as fine-grained particulate (<1 mm) Fe/(Fe+Mn+Al), Fe, Ca and Co are reflected in shifts in microbial populations. 16S rRNA clone libraries from each trap at three time points revealed a high percentage of Epsilonproteobacteria clones and hyperthermophilic Aquificae. There is a shift towards the end of the experiment to more Gammaproteobacteria and Alphaproteobacteria, many of whom likely participate in Fe and S cycling. The particle attached plume environment is genetically distinct from the surrounding seawater. While work to date in hydrothermal environments has focused on determining the microbial communities on hydrothermal chimneys and the basaltic lavas that form the surrounding seafloor, little comparable data exists on the plume environment that physically and chemically connects them. By employing sediment traps for a time series approach to sampling, we show that bacterial community composition on plume particles changes on time scales much shorter than previously known.
  • Article
    Measuring the form of iron in hydrothermal plume particles
    (The Oceanography Society, 2012-03) Toner, Brandy M. ; Marcus, Matthew A. ; Edwards, Katrina J. ; Rouxel, Olivier J. ; German, Christopher R.
    The global mid-ocean ridge (MOR) system is a 60,000 km submarine volcanic mountain range that crosses all of the major ocean basins on Earth. Along the MOR, subseafloor seawater circulation exchanges heat and elements between the oceanic crust and seawater. One of the elements released through this venting process is iron. The amount of iron released by hydrothermal venting to the ocean per year (called a flux) is similar in magnitude to that in global riverine runoff (Elderfield and Schultz, 1996). Until recently, measurements and modeling activities to understand the contribution of hydrothermal iron to the ocean budget have been largely neglected. It was thought that hydrothermal iron was removed completely from seawater by precipitation of iron-bearing minerals within plumes and then deposited at the seafloor close to vent sites. With this assumption in place, the contribution of hydrothermal fluxes to the ocean budget was considered negligible. Recent work, however, questions the validity of that assumption, and leads to what we call the "leaky vent" hypothesis. Our goal is to measure the forms of iron, known as speciation, present in hydrothermal plume particles to better understand the bioavailability, geochemical reactivity, and transport properties of hydrothermal iron in the ocean.
  • Preprint
    Sulfur isotope measurement of sulfate and sulfide by high-resolution MC-ICP-MS
    ( 2008-04) Craddock, Paul R. ; Rouxel, Olivier J. ; Ball, Lary A. ; Bach, Wolfgang
    We have developed a technique for the accurate and precise determination of 34S/32S isotope ratios (δ34S) in sulfur-bearing minerals using solution and laser ablation multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). We have examined and determined rigorous corrections for analytical difficulties such as instrumental mass bias, unresolved isobaric interferences, blanks, and laser ablation- and matrix-induced isotopic fractionation. Use of high resolution sector-field mass spectrometry removes major isobaric interferences from O2+. Standard–sample bracketing is used to correct for the instrumental mass bias of unknown samples. Blanks on sulfur masses arising from memory effects and residual oxygen-tailing are typically minor (< 0.2‰, within analytical error), and are mathematically removed by on-peak zero subtraction and by bracketing of samples with standards determined at the same signal intensity (within 20%). Matrix effects are significant (up to 0.7‰) for matrix compositions relevant to many natural sulfur-bearing minerals. For solution analysis, sulfur isotope compositions are best determined using purified (matrix-clean) sulfur standards and sample solutions using the chemical purification protocol we present. For in situ analysis, where the complex matrix cannot be removed prior to analysis, appropriately matrix-matching standards and samples removes matrix artifacts and yields sulfur isotope ratios consistent with conventional techniques using matrix-clean analytes. Our method enables solid samples to be calibrated against aqueous standards; a consideration that is important when certified, isotopically-homogeneous and appropriately matrix-matched solid standards do not exist. Further, bulk and in situ analyses can be performed interchangeably in a single analytical session because the instrumental setup is identical for both. We validated the robustness of our analytical method through multiple isotope analyses of a range of reference materials and have compared these with isotope ratios determined using independent techniques. Long-term reproducibility of S isotope compositions is typically 0.20‰ and 0.45‰ (2σ) for solution and laser analysis, respectively. Our method affords the opportunity to make accurate and relatively precise S isotope measurement for a wide range of sulfur-bearing materials, and is particularly appropriate for geologic samples with complex matrix and for which high-resolution in situ analysis is critical.
  • Preprint
    Multiple sulphur and iron isotope composition of detrital pyrite in Archaean sedimentary rocks : a new tool for provenance analysis
    ( 2009-06-29) Hofmann, Axel ; Bekker, Andrey ; Rouxel, Olivier J. ; Rumble, Douglas ; Master, Sharad
    Multiple S (δ34S and δ33S) and Fe (δ56Fe) isotope analyses of rounded pyrite grains from 3.1 to 2.6 Ga conglomerates of southern Africa indicate their detrital origin, which supports anoxic surface conditions in the Archaean. Rounded pyrites from Meso- to Neoarchaean gold and uranium-bearing strata of South Africa are derived from both crustal and sedimentary sources, the latter being characterised by non-mass dependent fractionation of S isotopes (Δ33S as negative as -1.35‰) and large range of Fe isotope values (δ56Fe between -1.1 and 1.2‰). Most sediment-sourced pyrite grains are likely derived from sulphide nodules in marine organic matter-rich shales, sedimentary exhalites and volcanogenic massive sulphide deposits. Some sedimentary pyrite grains may have been derived from in situ sulphidised Fe-oxides, prior to their incorporation into the conglomerates, as indicated by unusually high positive δ56Fe values. Sedimentary sulphides without significant non-mass dependent fractionation of S isotopes were also present in the source of some conglomerates. The abundance in these rocks of detrital pyrite unstable in the oxygenated atmosphere may suggest factors other than high pO2 as the cause for the absence of significant non-mass dependent fractionation processes in the 3.2 – 2.7 Ga atmosphere. Rounded pyrites from the ca. 2.6 Ga conglomerates of the Belingwe greenstone belt in Zimbabwe have strongly fractionated δ34S, Δ33S and δ56Fe values, the source of which can be traced back to black shale-hosted massive sulphides in the underlying strata. The study demonstrates the utility of combined multiple S and Fe isotope analysis for provenance reconstruction of Archaean sedimentary successions.
  • Article
    Ultra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive umber deposition at 5000 m off Hawaii
    (Nature Publishing Group, 2011-05-05) Edwards, Katrina J. ; Glazer, Brian T. ; Rouxel, Olivier J. ; Bach, Wolfgang ; Emerson, David ; Toner, Brandy M. ; Chan, Clara S. ; Tebo, Bradley M. ; Staudigel, Hubert ; Moyer, Craig L.
    A novel hydrothermal field has been discovered at the base of Lōihi Seamount, Hawaii, at 5000 mbsl. Geochemical analyses demonstrate that ‘FeMO Deep’, while only 0.2 °C above ambient seawater temperature, derives from a distal, ultra-diffuse hydrothermal source. FeMO Deep is expressed as regional seafloor seepage of gelatinous iron- and silica-rich deposits, pooling between and over basalt pillows, in places over a meter thick. The system is capped by mm to cm thick hydrothermally derived iron-oxyhydroxide- and manganese-oxide-layered crusts. We use molecular analyses (16S rDNA-based) of extant communities combined with fluorescent in situ hybridizations to demonstrate that FeMO Deep deposits contain living iron-oxidizing Zetaproteobacteria related to the recently isolated strain Mariprofundus ferroxydans. Bioenergetic calculations, based on in-situ electrochemical measurements and cell counts, indicate that reactions between iron and oxygen are important in supporting chemosynthesis in the mats, which we infer forms a trophic base of the mat ecosystem. We suggest that the biogenic FeMO Deep hydrothermal deposit represents a modern analog for one class of geological iron deposits known as ‘umbers’ (for example, Troodos ophilolites, Cyprus) because of striking similarities in size, setting and internal structures.
  • Preprint
    Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9–10°N
    ( 2008-03-06) Rouxel, Olivier J. ; Shanks, Wayne C. ; Bach, Wolfgang ; Edwards, Katrina J.
    In this study, we report on coupled Fe- and S-isotope systematics of hydrothermal fluids and sulfide deposits from the East Pacific Rise at 9-10°N to better constrain processes affecting Fe- isotope fractionation in hydrothermal environments. We aim to address three fundamental questions: (1) is there significant Fe isotope fractionation during sulfide precipitation? (2) Is there significant variability of Fe-isotope composition of the hydrothermal fluids reflecting sulfide precipitation in subsurface environments? (3) Are there any systematics between Fe- and S- isotopes in sulfide minerals? The results show that chalcopyrite, precipitating in the interior wall of a hydrothermal chimney displays a limited range of δ56Fe values and δ34S values, between –0.11 to –0.33‰ and 2.2 to 2.6‰ respectively. The δ56Fe values are, on average, slightly higher by 0.14‰ relative to coeval vent fluid composition while δ34S values suggest significant S-isotope fractionation (-0.6±0.2‰) during chalcopyrite precipitation. In contrast, systematically lower δ56Fe and δ34S values relative to hydrothermal fluids, by up to 0.91‰ and 2.0‰ respectively, are observed in pyrite and marcasite precipitating in the interior of active chimneys. These results suggest isotope disequilibrium in both Fe- and S-isotopes due to S-isotopic exchange between hydrothermal H2S and seawater SO42- followed by rapid formation of pyrite from FeS precursors, thus preserving the effects of a strong kinetic Fe-isotope fractionation during FeS precipitation. In contrast, δ56Fe and δ34S values of pyrite from inactive massive sulfides, which show evidence of extensive late-stage reworking, are essentially similar to the hydrothermal fluids. Multiple stages of remineralization of ancient chimney deposits at the seafloor appear to produce minimal Fe-isotope fractionation. Similar affects are indicated during subsurface sulfide precipitation as demonstrated by the lack of systematic differences between δ56Fe values in both high-temperature, Fe-rich black smokers and lower temperature, Fe-depleted vents.