Wave–vortex decomposition of one-dimensional ship track data

Thumbnail Image
Buhler, Oliver
Callies, Joern
Ferrari, Raffaele
Linked Authors
Alternative Title
Date Created
Replaced By
We present a simple two-step method by which one-dimensional spectra of horizontal velocity and buoyancy measured along a ship track can be decomposed into a wave component consisting of inertia–gravity waves and a vortex component consisting of a horizontal flow in geostrophic balance. The method requires certain assumptions for the data regarding stationarity, homogeneity, and horizontal isotropy. In the first step an exact Helmholtz decomposition of the horizontal velocity spectra into rotational and divergent components is performed and in the second step an energy equipartition property of hydrostatic inertia–gravity waves is exploited that allows diagnosing the wave energy spectrum solely from the observed horizontal velocities. The observed buoyancy spectrum can then be used to compute the residual vortex energy spectrum. Further wave–vortex decompositions of the observed fields are possible if additional information about the frequency content of the waves is available. We illustrate the method on two recent oceanic data sets from the North Pacific and the Gulf Stream. Notably, both steps in our new method might be of broader use in the theoretical and observational study of atmosphere and ocean fluid dynamics.
Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Cambridge University Press for personal use, not for redistribution. The definitive version was published in Journal of Fluid Mechanics 756 (2014): 1007-1026, doi:10.1017/jfm.2014.488.
Embargo Date
Cruise ID
Cruise DOI
Vessel Name