Callies Jörn

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 11 of 11
  • Article
    A simple and self-consistent geostrophic-force-balance model of the thermohaline circulation with boundary mixing
    (Copernicus Publications on behalf of the European Geosciences Union, 2012-01-27) Callies, Joern ; Marotzke, J.
    A simple model of the thermohaline circulation (THC) is formulated, with the objective to represent explicitly the geostrophic force balance of the basinwide THC. The model comprises advective-diffusive density balances in two meridional-vertical planes located at the eastern and the western walls of a hemispheric sector basin. Boundary mixing constrains vertical motion to lateral boundary layers along these walls. Interior, along-boundary, and zonally integrated meridional flows are in thermal-wind balance. Rossby waves and the absence of interior mixing render isopycnals zonally flat except near the western boundary, constraining meridional flow to the western boundary layer. The model is forced by a prescribed meridional surface density profile. This two-plane model reproduces both steady-state density and steady-state THC structures of a primitive-equation model. The solution shows narrow deep sinking at the eastern high latitudes, distributed upwelling at both boundaries, and a western boundary current with poleward surface and equatorward deep flow. The overturning strength has a 2/3-power-law dependence on vertical diffusivity and a 1/3-power-law dependence on the imposed meridional surface density difference. Convective mixing plays an essential role in the two-plane model, ensuring that deep sinking is located at high latitudes. This role of convective mixing is consistent with that in three-dimensional models and marks a sharp contrast with previous two-dimensional models. Overall, the two-plane model reproduces crucial features of the THC as simulated in simple-geometry three-dimensional models. At the same time, the model self-consistently makes quantitative a conceptual picture of the three-dimensional THC that hitherto has been expressed either purely qualitatively or not self-consistently.
  • Article
    Abyssal circulation driven by near-boundary mixing: water mass transformations and interior stratification
    (American Meteorological Society, 2020-07-24) Drake, Henri F. ; Ferrari, Raffaele ; Callies, Joern
    The emerging view of the abyssal circulation is that it is associated with bottom-enhanced mixing, which results in downwelling in the stratified ocean interior and upwelling in a bottom boundary layer along the insulating and sloping seafloor. In the limit of slowly varying vertical stratification and topography, however, boundary layer theory predicts that these upslope and downslope flows largely compensate, such that net water mass transformations along the slope are vanishingly small. Using a planetary geostrophic circulation model that resolves both the boundary layer dynamics and the large-scale overturning in an idealized basin with bottom-enhanced mixing along a midocean ridge, we show that vertical variations in stratification become sufficiently large at equilibrium to reduce the degree of compensation along the midocean ridge flanks. The resulting large net transformations are similar to estimates for the abyssal ocean and span the vertical extent of the ridge. These results suggest that boundary flows generated by mixing play a crucial role in setting the global ocean stratification and overturning circulation, requiring a revision of abyssal ocean theories.
  • Article
    Seasonality in submesoscale turbulence
    (Nature Publishing Group, 2015-04-21) Callies, Joern ; Ferrari, Raffaele ; Klymak, Jody M. ; Gula, Jonathan
    Although the strongest ocean surface currents occur at horizontal scales of order 100 km, recent numerical simulations suggest that flows smaller than these mesoscale eddies can achieve important vertical transports in the upper ocean. These submesoscale flows, 1–100 km in horizontal extent, take heat and atmospheric gases down into the interior ocean, accelerating air–sea fluxes, and bring deep nutrients up into the sunlit surface layer, fueling primary production. Here we present observational evidence that submesoscale flows undergo a seasonal cycle in the surface mixed layer: they are much stronger in winter than in summer. Submesoscale flows are energized by baroclinic instabilities that develop around geostrophic eddies in the deep winter mixed layer at a horizontal scale of order 1–10 km. Flows larger than this instability scale are energized by turbulent scale interactions. Enhanced submesoscale activity in the winter mixed layer is expected to achieve efficient exchanges with the permanent thermocline below.
  • Article
    The LatMix summer campaign : submesoscale stirring in the upper ocean
    (American Meteorological Society, 2015-08) Shcherbina, Andrey Y. ; Sundermeyer, Miles A. ; Kunze, Eric ; D'Asaro, Eric A. ; Badin, Gualtiero ; Birch, Daniel ; Brunner-Suzuki, Anne-Marie E. G. ; Callies, Joern ; Cervantes, Brandy T. Kuebel ; Claret, Mariona ; Concannon, Brian ; Early, Jeffrey ; Ferrari, Raffaele ; Goodman, Louis ; Harcourt, Ramsey R. ; Klymak, Jody M. ; Lee, Craig M. ; Lelong, M.-Pascale ; Levine, Murray D. ; Lien, Ren-Chieh ; Mahadevan, Amala ; McWilliams, James C. ; Molemaker, M. Jeroen ; Mukherjee, Sonaljit ; Nash, Jonathan D. ; Ozgokmen, Tamay M. ; Pierce, Stephen D. ; Ramachandran, Sanjiv ; Samelson, Roger M. ; Sanford, Thomas B. ; Shearman, R. Kipp ; Skyllingstad, Eric D. ; Smith, K. Shafer ; Tandon, Amit ; Taylor, John R. ; Terray, Eugene A. ; Thomas, Leif N. ; Ledwell, James R.
    Lateral stirring is a basic oceanographic phenomenon affecting the distribution of physical, chemical, and biological fields. Eddy stirring at scales on the order of 100 km (the mesoscale) is fairly well understood and explicitly represented in modern eddy-resolving numerical models of global ocean circulation. The same cannot be said for smaller-scale stirring processes. Here, the authors describe a major oceanographic field experiment aimed at observing and understanding the processes responsible for stirring at scales of 0.1–10 km. Stirring processes of varying intensity were studied in the Sargasso Sea eddy field approximately 250 km southeast of Cape Hatteras. Lateral variability of water-mass properties, the distribution of microscale turbulence, and the evolution of several patches of inert dye were studied with an array of shipboard, autonomous, and airborne instruments. Observations were made at two sites, characterized by weak and moderate background mesoscale straining, to contrast different regimes of lateral stirring. Analyses to date suggest that, in both cases, the lateral dispersion of natural and deliberately released tracers was O(1) m2 s–1 as found elsewhere, which is faster than might be expected from traditional shear dispersion by persistent mesoscale flow and linear internal waves. These findings point to the possible importance of kilometer-scale stirring by submesoscale eddies and nonlinear internal-wave processes or the need to modify the traditional shear-dispersion paradigm to include higher-order effects. A unique aspect of the Scalable Lateral Mixing and Coherent Turbulence (LatMix) field experiment is the combination of direct measurements of dye dispersion with the concurrent multiscale hydrographic and turbulence observations, enabling evaluation of the underlying mechanisms responsible for the observed dispersion at a new level.
  • Article
    Slantwise convection in the Irminger Sea
    (American Geophysical Union, 2022-09-28) Le Bras, Isabela A.‐A. ; Callies, Jörn ; Straneo, Fiammetta ; Biló, Tiago C. ; Holte, James ; Johnson, Helen L.
    The subpolar North Atlantic is a site of significant carbon dioxide, oxygen, and heat exchange with the atmosphere. This exchange, which regulates transient climate change and prevents large‐scale hypoxia throughout the North Atlantic, is thought to be mediated by vertical mixing in the ocean's surface mixed layer. Here we present observational evidence that waters deeper than the conventionally defined mixed layer are affected directly by atmospheric forcing in this region. When northerly winds blow along the Irminger Sea's western boundary current, the Ekman response pushes denser water over lighter water, potentially triggering slantwise convection. We estimate that this down‐front wind forcing is four times stronger than air–sea heat flux buoyancy forcing and can mix waters to several times the conventionally defined mixed layer depth. Slantwise convection is not included in most large‐scale ocean models, which likely limits their ability to accurately represent subpolar water mass transformations and deep ocean ventilation.
  • Article
    Low-Reynolds-number oscillating boundary layers on adiabatic slopes
    (Cambridge University Press, 2022-10-13) Kaiser, Bryan E. ; Pratt, Lawrence J. ; Callies, Jörn
    We investigate the instabilities and transition mechanisms of Boussinesq stratified boundary layers on sloping boundaries when subjected to oscillatory body forcing parallel to the slope. We examine idealized forms of boundary layers on hydraulically smooth abyssal slopes in tranquil mid- to low-latitude regions, where low-wavenumber internal tides gently heave isopycnals up and down adiabatic slopes in the absence of mean flows, high-wavenumber internal tides, shelf breaks, resonant tide–bathymetry interactions (critical slopes) and other phenomena associated with turbulence ‘hot spots’. In non-rotating low-Reynolds-number flow, increased stratification on the downslope phase has a relaminarizing effect, while on the upslope phase we find transition-to-turbulence pathways arise from shear production triggered by gravitational instabilities. When rotation is significant (low slope Burger numbers) we find that boundary layer turbulence is sustained throughout the oscillation period, resembling stratified Stokes–Ekman layer turbulence. Simulation results suggest that oscillating boundary layers on smooth slopes at low Reynolds number ($\textit {Re}\leqslant 840$), unity Prandtl number and slope Burger numbers greater than unity do not cause significant irreversible turbulent buoyancy flux (mixing), and that flat-bottom dissipation rate models derived from the tide amplitude are accurate within an order of magnitude.
  • Preprint
    Wave–vortex decomposition of one-dimensional ship track data
    ( 2014-07-29) Buhler, Oliver ; Callies, Joern ; Ferrari, Raffaele
    We present a simple two-step method by which one-dimensional spectra of horizontal velocity and buoyancy measured along a ship track can be decomposed into a wave component consisting of inertia–gravity waves and a vortex component consisting of a horizontal flow in geostrophic balance. The method requires certain assumptions for the data regarding stationarity, homogeneity, and horizontal isotropy. In the first step an exact Helmholtz decomposition of the horizontal velocity spectra into rotational and divergent components is performed and in the second step an energy equipartition property of hydrostatic inertia–gravity waves is exploited that allows diagnosing the wave energy spectrum solely from the observed horizontal velocities. The observed buoyancy spectrum can then be used to compute the residual vortex energy spectrum. Further wave–vortex decompositions of the observed fields are possible if additional information about the frequency content of the waves is available. We illustrate the method on two recent oceanic data sets from the North Pacific and the Gulf Stream. Notably, both steps in our new method might be of broader use in the theoretical and observational study of atmosphere and ocean fluid dynamics.
  • Article
    Dynamics of eddying abyssal mixing layers over sloping rough topography
    (American Meteorological Society, 2022-11-18) Drake, Henri F. ; Ruan, Xiaozhou ; Callies, Joern ; Ogden, Kelly A. ; Thurnherr, Andreas M. ; Ferrari, Raffaele
    The abyssal overturning circulation is thought to be primarily driven by small-scale turbulent mixing. Diagnosed water-mass transformations are dominated by rough topography “hotspots,” where the bottom enhancement of mixing causes the diffusive buoyancy flux to diverge, driving widespread downwelling in the interior—only to be overwhelmed by an even stronger upwelling in a thin bottom boundary layer (BBL). These water-mass transformations are significantly underestimated by one-dimensional (1D) sloping boundary layer solutions, suggesting the importance of three-dimensional physics. Here, we use a hierarchy of models to generalize this 1D boundary layer approach to three-dimensional eddying flows over realistically rough topography. When applied to the Mid-Atlantic Ridge in the Brazil Basin, the idealized simulation results are roughly consistent with available observations. Integral buoyancy budgets isolate the physical processes that contribute to realistically strong BBL upwelling. The downward diffusion of buoyancy is primarily balanced by upwelling along the sloping canyon sidewalls and the surrounding abyssal hills. These flows are strengthened by the restratifying effects of submesoscale baroclinic eddies and by the blocking of along-ridge thermal wind within the canyon. Major topographic sills block along-thalweg flows from restratifying the canyon trough, resulting in the continual erosion of the trough’s stratification. We propose simple modifications to the 1D boundary layer model that approximate each of these three-dimensional effects. These results provide local dynamical insights into mixing-driven abyssal overturning, but a complete theory will also require the nonlocal coupling to the basin-scale circulation.
  • Article
    Kinetic energy transfers between mesoscale and submesoscale motions in the open ocean’s upper layers
    (American Meteorological Society, 2022-01-01) Naveira Garabato, Alberto C. ; Yu, Xiaolong ; Callies, Joern ; Barkan, Roy ; Polzin, Kurt L. ; Frajka-Williams, Eleanor E. ; Buckingham, Christian E. ; Griffies, Stephen M.
    Mesoscale eddies contain the bulk of the ocean’s kinetic energy (KE), but fundamental questions remain on the cross-scale KE transfers linking eddy generation and dissipation. The role of submesoscale flows represents the key point of discussion, with contrasting views of submesoscales as either a source or a sink of mesoscale KE. Here, the first observational assessment of the annual cycle of the KE transfer between mesoscale and submesoscale motions is performed in the upper layers of a typical open-ocean region. Although these diagnostics have marginal statistical significance and should be regarded cautiously, they are physically plausible and can provide a valuable benchmark for model evaluation. The cross-scale KE transfer exhibits two distinct stages, whereby submesoscales energize mesoscales in winter and drain mesoscales in spring. Despite this seasonal reversal, an inverse KE cascade operates throughout the year across much of the mesoscale range. Our results are not incompatible with recent modeling investigations that place the headwaters of the inverse KE cascade at the submesoscale, and that rationalize the seasonality of mesoscale KE as an inverse cascade-mediated response to the generation of submesoscales in winter. However, our findings may challenge those investigations by suggesting that, in spring, a downscale KE transfer could dampen the inverse KE cascade. An exploratory appraisal of the dynamics governing mesoscale–submesoscale KE exchanges suggests that the upscale KE transfer in winter is underpinned by mixed layer baroclinic instabilities, and that the downscale KE transfer in spring is associated with frontogenesis. Current submesoscale-permitting ocean models may substantially understate this downscale KE transfer, due to the models’ muted representation of frontogenesis.
  • Thesis
    Submesoscale turbulence in the upper ocean
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2016-02) Callies, Joern
    Submesoscale flows, current systems 1–100 km in horizontal extent, are increasingly coming into focus as an important component of upper-ocean dynamics. A range of processes have been proposed to energize submesoscale flows, but which process dominates in reality must be determined observationally. We diagnose from observed flow statistics that in the thermocline the dynamics in the submesoscale range transition from geostrophic turbulence at large scales to inertia–gravity waves at small scales, with the transition scale depending dramatically on geographic location. A similar transition is shown to occur in the atmosphere, suggesting intriguing similarities between atmospheric and oceanic dynamics.We furthermore diagnose from upper-ocean observations a seasonal cycle in submesoscale turbulence: fronts and currents are more energetic in the deep wintertime mixed layer than in the summertime seasonal thermocline. This seasonal cycle hints at the importance of baroclinic mixed layer instabilities in energizing submesoscale turbulence in winter. To better understand this energization, three aspects of the dynamics of baroclinic mixed layer instabilities are investigated. First, we formulate a quasigeostrophic model that describes the linear and nonlinear evolution of these instabilities. The simple model reproduces the observed wintertime distribution of energy across scales and depth, suggesting it captures the essence of how the submesoscale range is energized in winter. Second, we investigate how baroclinic instabilities are affected by convection, which is generated by atmospheric forcing and dominates the mixed layer dynamics at small scales. It is found that baroclinic instabilities are remarkably resilient to the presence of convection and develop even when rapid overturns keep the mixed layer unstratified. Third, we discuss the restratification induced by baroclinic mixed layer instabilities. We show that the rate of restratification depends on characteristics of the baroclinic eddies themselves, a dependence not captured by a previously proposed parameterization. These insights sharpen our understanding of submesoscale dynamics and can help focus future inquiry into whether and how submesoscale flows influence the ocean’s role in climate.
  • Article
    Vertical‐slice ocean tomography with seismic waves
    (American Geophysical Union, 2023-04-15) Callies, Jörn ; Wu, Wenbo ; Peng, Shirui ; Zhan, Zhongwen
    Seismically generated sound waves that propagate through the ocean are used to infer temperature anomalies and their vertical structure in the deep East Indian Ocean. These T waves are generated by earthquakes off Sumatra and received by hydrophone stations off Diego Garcia and Cape Leeuwin. Between repeating earthquakes, a T wave's travel time changes in response to temperature anomalies along the wave's path. What part of the water column the travel time is sensitive to depends on the frequency of the wave, so measuring travel time changes at a few low frequencies constrains the vertical structure of the inferred temperature anomalies. These measurements reveal anomalies due to equatorial waves, mesoscale eddies, and decadal warming trends. By providing direct constraints on basin‐scale averages with dense sampling in time, these data complement previous point measurements that alias local and transient temperature anomalies.