The importance of dissimilatory nitrate reduction to ammonium (DNRA) in the nitrogen cycle of coastal ecosystems

Thumbnail Image
Date
2013-09
Authors
Giblin, Anne E.
Tobias, Craig R.
Song, Bongkeun
Weston, Nathaniel
Banta, Gary T.
Rivera-Monroy, Victor H.
Alternative Title
Date Created
Location
DOI
10.5670/oceanog.2013.54
Related Materials
Replaces
Replaced By
Keywords
Abstract
Until recently, it was believed that biological assimilation and gaseous nitrogen (N) loss through denitrification were the two major fates of nitrate entering or produced within most coastal ecosystems. Denitrification is often viewed as an important ecosystem service that removes reactive N from the ecosystem. However, there is a competing nitrate reduction process, dissimilatory nitrate reduction to ammonium (DNRA), that conserves N within the ecosystem. The recent application of nitrogen stable isotopes as tracers has generated growing evidence that DNRA is a major nitrogen pathway that cannot be ignored. Measurements comparing the importance of denitrification vs. DNRA in 55 coastal sites found that DNRA accounted for more than 30% of the nitrate reduction at 26 sites. DNRA was the dominant pathway at more than one-third of the sites. Understanding what controls the relative importance of denitrification and DNRA, and how the balance changes with increased nitrogen loading, is of critical importance for predicting eutrophication trajectories. Recent improvements in methods for assessing rates of DNRA have helped refine our understanding of the rates and controls of this process, but accurate measurements in vegetated sediment still remain a challenge.
Description
Author Posting. © The Oceanography Society, 2013. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 26, no. 3 (2013): 124–131, doi:10.5670/oceanog.2013.54.
Embargo Date
Citation
Oceanography 26, no. 3 (2013): 124–131
Cruises
Cruise ID
Cruise DOI
Vessel Name