Tobias
Craig R.
Tobias
Craig R.
No Thumbnail Available
Search Results
Now showing
1 - 5 of 5
-
ArticleThe importance of dissimilatory nitrate reduction to ammonium (DNRA) in the nitrogen cycle of coastal ecosystems(The Oceanography Society, 2013-09) Giblin, Anne E. ; Tobias, Craig R. ; Song, Bongkeun ; Weston, Nathaniel ; Banta, Gary T. ; Rivera-Monroy, Victor H.Until recently, it was believed that biological assimilation and gaseous nitrogen (N) loss through denitrification were the two major fates of nitrate entering or produced within most coastal ecosystems. Denitrification is often viewed as an important ecosystem service that removes reactive N from the ecosystem. However, there is a competing nitrate reduction process, dissimilatory nitrate reduction to ammonium (DNRA), that conserves N within the ecosystem. The recent application of nitrogen stable isotopes as tracers has generated growing evidence that DNRA is a major nitrogen pathway that cannot be ignored. Measurements comparing the importance of denitrification vs. DNRA in 55 coastal sites found that DNRA accounted for more than 30% of the nitrate reduction at 26 sites. DNRA was the dominant pathway at more than one-third of the sites. Understanding what controls the relative importance of denitrification and DNRA, and how the balance changes with increased nitrogen loading, is of critical importance for predicting eutrophication trajectories. Recent improvements in methods for assessing rates of DNRA have helped refine our understanding of the rates and controls of this process, but accurate measurements in vegetated sediment still remain a challenge.
-
PreprintModeling denitrification in aquatic sediments( 2008-10-10) Fennel, Katja ; Brady, Damian C. ; DiToro, Dominic ; Fulweiler, Robinson W. ; Gardner, Wayne S. ; Giblin, Anne E. ; McCarthy, Mark J. ; Rao, Alexandra ; Seitzinger, Sybil P. ; Thouvenot-Korppoo, Marie ; Tobias, Craig R.Sediment denitrification is a major pathway of fixed nitrogen loss from aquatic systems. Due to technical difficulties in measuring this process and its spatial and temporal variability, estimates of local, regional and global denitrification have to rely on a combination of measurements and models. Here we review approaches to describing denitrification in aquatic sediments, ranging from mechanistic diagenetic models to empirical parameterizations of nitrogen fluxes across the sediment-water interface. We also present a compilation of denitrification measurements and ancillary data for different aquatic systems, ranging from freshwater to marine. Based on this data compilation we reevaluate published parameterizations of denitrification. We recommend that future models of denitrification use (1) a combination of mechanistic diagenetic models and measurements where bottom waters are temporally hypoxic or anoxic, and (2) the much simpler correlations between denitrification and sediment oxygen consumption for oxic bottom waters. For our data set, inclusion of bottom water oxygen and nitrate concentrations in a multivariate regression did not improve the statistical fit.
-
ArticleFlow and geochemistry of groundwater beneath a back-barrier lagoon : the subterranean estuary at Chincoteague Bay, Maryland, USA(Elsevier B.V., 2009-01-21) Bratton, John F. ; Bohlke, John K. ; Krantz, David E. ; Tobias, Craig R.To better understand large-scale interactions between fresh and saline groundwater beneath an Atlantic coastal estuary, an offshore drilling and sampling study was performed in a large barrier-bounded lagoon, Chincoteague Bay, Maryland, USA. Groundwater that was significantly fresher than overlying bay water was found in shallow plumes up to 8 m thick extending more than 1700 m offshore. Groundwater saltier than bay surface water was found locally beneath the lagoon and the barrier island, indicating recharge by saline water concentrated by evaporation prior to infiltration. Steep salinity and nutrient gradients occur within a few meters of the sediment surface in most locations studied, with buried peats and estuarine muds acting as confining units. Groundwater ages were generally more than 50 years in both fresh and brackish waters as deep as 23 m below the bay bottom. Water chemistry and isotopic data indicate that freshened plumes beneath the estuary are mixtures of water originally recharged on land and varying amounts of estuarine surface water that circulated through the bay floor, possibly at some distance from the sampling location. Ammonium is the dominant fixed nitrogen species in saline groundwater beneath the estuary at the locations sampled. Isotopic and dissolved-gas data from one location indicate that denitrification within the subsurface flow system removed terrestrial nitrate from fresh groundwater prior to discharge along the western side of the estuary. Similar situations, with one or more shallow semi-confined flow systems where groundwater geochemistry is strongly influenced by circulation of surface estuary water through organic-rich sediments, may be common on the Atlantic margin and elsewhere.
-
ArticleDenitrification across landscapes and waterscapes : a synthesis(Ecological Society of America, 2006-12) Seitzinger, Sybil P. ; Harrison, John A. ; Bohlke, John K. ; Bouwman, A. F. ; Lowrance, R. Richard ; Peterson, Bruce J. ; Tobias, Craig R. ; Van Drecht, G.Denitrification is a critical process regulating the removal of bioavailable nitrogen (N) from natural and human-altered systems. While it has been extensively studied in terrestrial, freshwater, and marine systems, there has been limited communication among denitrification scientists working in these individual systems. Here, we compare rates of denitrification and controlling factors across a range of ecosystem types. We suggest that terrestrial, freshwater, and marine systems in which denitrification occurs can be organized along a continuum ranging from (1) those in which nitrification and denitrification are tightly coupled in space and time to (2) those in which nitrate production and denitrification are relatively decoupled. In aquatic ecosystems, N inputs influence denitrification rates whereas hydrology and geomorphology influence the proportion of N inputs that are denitrified. Relationships between denitrification and water residence time and N load are remarkably similar across lakes, river reaches, estuaries, and continental shelves. Spatially distributed global models of denitrification suggest that continental shelf sediments account for the largest portion (44%) of total global denitrification, followed by terrestrial soils (22%) and oceanic oxygen minimum zones (OMZs; 14%). Freshwater systems (groundwater, lakes, rivers) account for about 20% and estuaries 1% of total global denitrification. Denitrification of land-based N sources is distributed somewhat differently. Within watersheds, the amount of land-based N denitrified is generally highest in terrestrial soils, with progressively smaller amounts denitrified in groundwater, rivers, lakes and reservoirs, and estuaries. A number of regional exceptions to this general trend of decreasing denitrification in a downstream direction exist, including significant denitrification in continental shelves of N from terrestrial sources. Though terrestrial soils and groundwater are responsible for much denitrification at the watershed scale, per-area denitrification rates in soils and groundwater (kg N·km−2·yr−1) are, on average, approximately one-tenth the per-area rates of denitrification in lakes, rivers, estuaries, continental shelves, or OMZs. A number of potential approaches to increase denitrification on the landscape, and thus decrease N export to sensitive coastal systems exist. However, these have not generally been widely tested for their effectiveness at scales required to significantly reduce N export at the whole watershed scale.
-
ArticleStable isotope monitoring of benthic–planktonic coupling using salt marsh fish(Inter-Research, 2008-10-13) Fry, Brian ; Cieri, Matthew ; Hughes, Jeff ; Tobias, Craig R. ; Deegan, Linda A. ; Peterson, Bruce J.Salt marshes are important coastal ecosystems whose trophic function can be monitored with stable isotopes of abundant fish biosentinel species such as the mummichog Fundulus heteroclitus and the Atlantic silverside Menidia menidia. We compared movement patterns and feeding biology of these species in the summers of 1999 and 2000 in the Rowley River salt marsh estuary north of Boston, Massachusetts, USA. A 15N tracer addition experiment showed that fish of both species were more resident than transient, with mummichogs resident at scales of 1 km or less. Natural abundance stable isotope C, N, and S distributions showed that mummichogs feed more strongly in the benthic food web while silversides feed more in the planktonic food web, with % benthic feeding respectively averaging 58 ± 5 and 32 ± 3% (mean ± 95% confidence limit, CL). For both species, isotope results indicated considerable individual specialization in foraging behavior, likely related to use of channel habitat versus use of the marsh. Power analysis showed that measuring 3 composite samples each comprising 10 to 15 individual fish should provide relatively low errors of 0.5‰ (95% CL) or less around stable isotope averages. Use of such composite samples in monitoring programs will allow detection of significant temporal and spatial changes in benthic-planktonic coupling for salt marsh ecosystems, as recorded in average fish diets. Analyzing some individual fish also is recommended to obtain more detailed information on fish food sources, feeding specializations, and end-member isotope values used in estimating importance of benthic and planktonic food sources.