The carbon cycle and associated redox processes through time

Thumbnail Image
Hayes, John M.
Waldbauer, Jacob R.
Linked Authors
Alternative Title
Date Created
Related Materials
Replaced By
Carbon cycle
Carbon isotopes
Atmospheric oxygen
Earth’s biogeochemical cycle of carbon delivers both limestones and organic materials to the crust. In numerous, biologically catalyzed redox reactions, hydrogen, sulfur, iron, and oxygen serve prominently as electron donors and acceptors. The progress of these reactions can be reconstructed from records of variations in the abundance of 13C in sedimentary carbonate minerals and organic materials. Because the crust is always receiving new CO2 from the mantle and a portion of it is being reduced by photoautotrophs, the carbon cycle has continuously released oxidizing power. Most of it is represented by Fe3+ that has accumulated in the crust or been returned to the mantle via subduction. Less than 3% of the estimated, integrated production of oxidizing power since 3.8 Ga is represented by O2 in the atmosphere and dissolved in seawater. The balance is represented by sulfate. The accumulation of oxidizing power can be estimated from budgets summarizing inputs of mantle carbon and rates of organic-carbon burial, but levels of O2 are only weakly and indirectly coupled to those phenomena and thus to carbon-isotopic records. Elevated abundances of 13C in carbonate minerals ~2.3 Gyr old, in particular, are here interpreted as indicating the importance of methanogenic bacteria in sediments rather than increased burial of organic carbon.
Author Posting. © Royal Society, 2006. This is the author's version of the work. It is posted here by permission of Royal Society for personal use, not for redistribution. The definitive version was published in Philosophical Transactions of the Royal Society B: Biological Sciences 361 (2006): 931-950, doi:10.1098/rstb.2006.1840.
Embargo Date
Cruise ID
Cruise DOI
Vessel Name