Waldbauer Jacob R.

No Thumbnail Available
Last Name
First Name
Jacob R.

Search Results

Now showing 1 - 4 of 4
  • Preprint
    Deciphering ocean carbon in a changing world
    ( 2016-01-13) Moran, Mary Ann ; Kujawinski, Elizabeth B. ; Stubbins, Aron ; Fatland, Rob ; Aluwihare, Lihini I. ; Buchan, Alison ; Crump, Byron C. ; Dorrestein, Pieter C. ; Dyhrman, Sonya T. ; Hess, Nancy J. ; Howe, Bill ; Longnecker, Krista ; Medeiros, Patricia M. ; Niggemann, Jutta ; Obernosterer, Ingrid ; Repeta, Daniel J. ; Waldbauer, Jacob R.
    Dissolved organic matter (DOM) in the oceans is one of the largest pools of reduced carbon on Earth, comparable in size to the atmospheric CO2 reservoir. A vast number of compounds are present in DOM and they play important roles in all major element cycles, contribute to the storage of atmospheric CO2 in the ocean, support marine ecosystems, and facilitate interactions between organisms. At the heart of the DOM cycle lie molecular-level relationships between the individual compounds in DOM and the members of the ocean microbiome that produce and consume them. In the past, these connections have eluded clear definition because of the sheer numerical complexity of both DOM molecules and microorganisms. Emerging tools in analytical chemistry, microbiology and informatics are breaking down the barriers to a fuller appreciation of these connections. Here we highlight questions being addressed using recent methodological and technological developments in those fields and consider how these advances are transforming our understanding of some of the most important reactions of the marine carbon cycle.
  • Preprint
    The carbon cycle and associated redox processes through time
    ( 2006-01-24) Hayes, John M. ; Waldbauer, Jacob R.
    Earth’s biogeochemical cycle of carbon delivers both limestones and organic materials to the crust. In numerous, biologically catalyzed redox reactions, hydrogen, sulfur, iron, and oxygen serve prominently as electron donors and acceptors. The progress of these reactions can be reconstructed from records of variations in the abundance of 13C in sedimentary carbonate minerals and organic materials. Because the crust is always receiving new CO2 from the mantle and a portion of it is being reduced by photoautotrophs, the carbon cycle has continuously released oxidizing power. Most of it is represented by Fe3+ that has accumulated in the crust or been returned to the mantle via subduction. Less than 3% of the estimated, integrated production of oxidizing power since 3.8 Ga is represented by O2 in the atmosphere and dissolved in seawater. The balance is represented by sulfate. The accumulation of oxidizing power can be estimated from budgets summarizing inputs of mantle carbon and rates of organic-carbon burial, but levels of O2 are only weakly and indirectly coupled to those phenomena and thus to carbon-isotopic records. Elevated abundances of 13C in carbonate minerals ~2.3 Gyr old, in particular, are here interpreted as indicating the importance of methanogenic bacteria in sediments rather than increased burial of organic carbon.
  • Thesis
    Molecular biogeochemistry of modern and ancient marine microbes
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2010-02) Waldbauer, Jacob R.
    Biological activity has shaped the surface of the earth in numerous ways, but life’s most pervasive and persistent global impact has been the secular oxidation of the surface environment. Through primary production – the biochemical reduction of carbon dioxide to synthesize biomass – large amounts of oxidants such as molecular oxygen, sulfate and ferric iron have accumulated in the ocean, atmosphere and crust, fundamentally altering the chemical environment of the earth’s surface. This thesis addresses aspects of the role of marine microorganisms in driving this process. In the first section of the thesis, biomarkers (hydrocarbon molecular fossils) are used to investigate the early history of microbial diversity and biogeochemistry. Molecular fossils from the Transvaal Supergroup, South Africa, document the presence in the oceans of a diverse microbiota, including eukaryotes, as well as oxygenic photosynthesis and aerobic biochemistry, by ca. 2.7Ga. Experimental study of the oxygen requirements of steroid biosynthesis suggests that sterane biomarkers in late Archean rocks are consistent with the persistence of microaerobic surface ocean environments long before the initial oxygenation of the atmosphere. In the second part, using Prochlorococcus (a marine cyanobacterium that is the most abundant primary producer on earth today) as a model system, we explored how microbes use the limited nutrient resources available in the marine environment to make the protein catalysts that enable primary production. Quantification of the Prochlorococcus proteome over the diel cell-division cycle reveals that protein abundances are distinct from transcript-level dynamics, and that small temporal shifts in enzyme levels can redirect metabolic fluxes. This thesis illustrates how molecular techniques can contribute to a systems-level understanding of biogeochemical processes, which will aid in reconstructing the past of, and predicting future change in, earth surface environments.
  • Article
    Chitin utilization by marine picocyanobacteria and the evolution of a planktonic lifestyle
    (National Academy of Sciences, 2023-05-16) Capovilla, Giovanna ; Braakman, Rogier ; Fournier, Gregory P. ; Hackl, Thomas ; Schwartzman, Julia ; Lu, Xinda ; Yelton, Alexis ; Longnecker, Krista ; Soule, Melissa C. Kido ; Thomas, Elaina ; Swarr, Gretchen ; Mongera, Alessandro ; Payette, Jack G. ; Castro, Kurt G. ; Waldbauer, Jacob R. ; Kujawinski, Elizabeth B. ; Cordero, Otto X. ; Chisholm, Sallie W.
    Marine picocyanobacteria Prochlorococcus and Synechococcus, the most abundant photosynthetic cells in the oceans, are generally thought to have a primarily single-celled and free-living lifestyle. However, while studying the ability of picocyanobacteria to supplement photosynthetic carbon fixation with the use of exogenous organic carbon, we found the widespread occurrence of genes for breaking down chitin, an abundant source of organic carbon that exists primarily as particles. We show that cells that encode a chitin degradation pathway display chitin degradation activity, attach to chitin particles, and show enhanced growth under low light conditions when exposed to chitosan, a partially deacetylated soluble form of chitin. Marine chitin is largely derived from arthropods, which underwent major diversifications 520 to 535 Mya, close to when marine picocyanobacteria are inferred to have appeared in the ocean. Phylogenetic analyses confirm that the chitin utilization trait was acquired at the root of marine picocyanobacteria. Together this leads us to postulate that attachment to chitin particles allowed benthic cyanobacteria to emulate their mat-based lifestyle in the water column, initiating their expansion into the open ocean, seeding the rise of modern marine ecosystems. Subsequently, transitioning to a constitutive planktonic life without chitin associations led to cellular and genomic streamlining along a major early branch within Prochlorococcus. Our work highlights how the emergence of associations between organisms from different trophic levels, and their coevolution, creates opportunities for colonizing new environments. In this view, the rise of ecological complexity and the expansion of the biosphere are deeply intertwined processes.