Heat loss and hydrothermal circulation due to sea-floor spreading
Heat loss and hydrothermal circulation due to sea-floor spreading
Date
1974-07
Authors
Williams, David Lee
Linked Authors
Person
Files
Alternative Title
Citable URI
As Published
Date Created
Location
86°W
Galapagos Spreading Center
Galapagos Spreading Center
DOI
10.1575/1912/1253
Related Materials
Replaces
Replaced By
Keywords
Heat loss
Seafloor spreading
Hydrothermal circulaiton
Atlantis II (Ship : 1963-) Cruise AII77
Seafloor spreading
Hydrothermal circulaiton
Atlantis II (Ship : 1963-) Cruise AII77
Abstract
Lithospheric cooling along the Galapagos Spreading Center at 86°W longitude, as determined by surface heat-flow measurements,
appears dominated by hydrothermal circulation. This same phenomena apparently exists on the Mid-Atlantic Ridge at
36°N and presumably, in some form on all active oceanic ridges. It is responsible for removing the majority of the heat (>80%)
lost through young (few m.y. old) oceanic crust. This component of heat has been ignored in previous calculations of the
total rate of heat loss by the Earth. A theoretical expression is used to estimate the heat released by sea-floor spreading, since current technology does not provide any means for direct measurement. The revised
value of lO.2 x 1Ol2 cal/sec (±15%) represents a 32% increase over previous estimates. More than 20% of this heat apparently escapes through hydrothermal vents near sea-floor spreading centers. The previously accepted equality of oceanic and continental heat flux is invalid. The revised analysis indicates the oceanic heat flux is 2.2 x 1O-6 cal/cm2-sec (HFU) versus
l.5 HFU for the continents . The average for the Earth is then approximately 2.0 HFU. The horizontal wavelength of inferred hydrothermal convection at the Galapagos Spreading Center, in the one dimension
measured, is 6 il km. The systematic modulation suggests cellular convection. If the system is dominated by cellular convection, the depth of penetration, based on laboratory modeling experiments should be 3 to 4 kilometers. The data from the Galapagos Spreading Center and laboratory
experiments both suggest that the position of the cells in a cellular convection system can be a strong function of the local topography, the rising limbs of flow being located beneath topographic highs and the descending limbs beneath topographic lows. The addition of topography enhances the heat transfer efficiency of a convection system. Lateral variation in permeability or the systems bottom boundary condition will also influence the position of cells. Even if the circulation system were strongly influenced by some combination of variations in the strength of the heat source, topography or discrete zones of high permeability, it would probably still be cellular in nature, and similar deep penetration is indicated. If the Galapagos Spreading Center is typical, there are presumably numerous hydrothermal springs and fissures in each square kilometer of near-ridge sea floor and sediment thicknesses
of at least 50 meters are apparently penetrable to the flow of water. As the sea floor ages the surface of the hydrothermal
system becomes less permeable and eventually both the surface and the deep system are completely clogged and sealed.
The age at which this occurs varies from ridge to ridge but there is evidence that suggests it may not be complete until
the crust is at least 8 m.y. old and possibly as much as 40-50 m.y. old. Most of the surface is apparently sealed long before
hydrothermal circulation stops, although some vents do persist. This behavior of the hydrothermal system has a dramatic
effect on conductive heat-flow measurements and is largely responsible for the variations observed in conductive heat flow near active spreading ridges. The results of this study show the difficulties in resolving
systematic patterns in the heat-flow distribution on spreading ridges. Numerous, closely-spaced measurements with
precise navigation combined with a relatively uniform sediment cover, appear to be necessary ingredients for recognition of
the heat-flow pattern near active sea-floor spreading centers.
Description
Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June, 1974
Embargo Date
Citation
Williams, D. L. (1974). Heat loss and hydrothermal circulation due to sea-floor spreading [Doctoral thesis, Woods Hole Oceanographic Institution]. Woods Hole Open Access Server. https://doi.org/10.1575/1912/1253