A novel trigger-based method for hydrothermal vents prospecting using an autonomous underwater robot

Thumbnail Image
Date
2010-04
Authors
Ferri, Gabriele
Jakuba, Michael V.
Yoerger, Dana R.
Linked Authors
Alternative Title
Date Created
Location
DOI
Related Materials
Replaces
Replaced By
Keywords
AUV
Adaptive survey
Hydrothermal vents prospecting
Chemical plume tracing
Abstract
In this paper we address the problem of localizing active hydrothermal vents on the seafloor using an Autonomous Underwater Vehicle (AUV). The plumes emitted by hydrothermal vents are the result of thermal and chemical inputs from submarine hot spring systems into the overlying ocean. The Woods Hole Oceanographic Institution's Autonomous Benthic Explorer (ABE) AUV has successfully localized previously undiscovered hydrothermal vent fields in several recent vent prospecting expeditions. These expeditions utilized the AUV for a three-stage, nested survey strategy approach (German et al., 2008). Each stage consists of a survey flown at successively deeper depths through easier to detect but spatially more constrained vent fluids. Ideally this sequence of surveys culminates in photographic evidence of the vent fields themselves. In this work we introduce a new adaptive strategy for an AUV's movement during the first, highest-altitude survey: the AUV initially moves along pre-designed tracklines but certain conditions can trigger an adaptive movement that is likely to acquire additional high value data for vent localization. The trigger threshold is changed during the mission, adapting the method to the different survey profiles the robot may find. The proposed algorithm is vetted on data from previous ABE missions and measures of efficiency presented.
Description
Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Autonomous Robots 29 (2010): 67-83, doi:10.1007/s10514-010-9187-y.
Embargo Date
Citation
Cruises
Cruise ID
Cruise DOI
Vessel Name