Mapping turbulent diffusivity associated with oceanic internal lee waves offshore Costa Rica

Thumbnail Image
Date
2016-04-26
Authors
Fortin, Will F. J.
Holbrook, W. Steven
Schmitt, Raymond W.
Linked Authors
Alternative Title
Date Created
Location
DOI
10.5194/os-12-601-2016
Related Materials
Replaces
Replaced By
Keywords
Abstract
Breaking internal waves play a primary role in maintaining the meridional overturning circulation. Oceanic lee waves are known to be a significant contributor to diapycnal mixing associated with internal wave dissipation, but direct measurement is difficult with standard oceanographic sampling methods due to the limited spatial extent of standing lee waves. Here, we present an analysis of oceanic internal lee waves observed offshore eastern Costa Rica using seismic imaging and estimate the turbulent diffusivity via a new seismic slope spectrum method that extracts diffusivities directly from seismic images, using tracked reflections only to scale diffusivity values. The result provides estimates of turbulent diffusivities throughout the water column at scales of a few hundred meters laterally and 10 m vertically. Synthetic tests demonstrate the method's ability to resolve turbulent structures and reproduce accurate diffusivities. A turbulence map of our seismic section in the western Caribbean shows elevated turbulent diffusivities near rough seafloor topography as well as in the mid-water column where observed lee wave propagation terminates. Mid-water column hotspots of turbulent diffusivity show levels 5 times higher than surrounding waters and 50 times greater than typical open-ocean diffusivities. This site has steady currents that make it an exceptionally accessible laboratory for the study of lee-wave generation, propagation, and decay.
Description
© The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ocean Science 12 (2016): 601-612, doi:10.5194/os-12-601-2016.
Embargo Date
Citation
Ocean Science 12 (2016): 601-612
Cruises
Cruise ID
Cruise DOI
Vessel Name
Except where otherwise noted, this item's license is described as Attribution 3.0 Unported