Holbrook
W. Steven
Holbrook
W. Steven
No Thumbnail Available
Search Results
Now showing
1 - 20 of 22
-
ArticleSeismic reflection imaging of water mass boundaries in the Norwegian Sea(American Geophysical Union, 2004-12-14) Nandi, Papia ; Holbrook, W. Steven ; Pearse, Scott ; Paramo, Pedro ; Schmitt, Raymond W.Results from the first joint temperature and seismic reflection study of the ocean demonstrate that water mass boundaries can be acoustically mapped. Multichannel seismic profiles collected in the Norwegian Sea show reflections between the Norwegian Atlantic Current and Norwegian Sea Deep Water. The images were corroborated with a dense array of expendable bathythermographs and expendable conductivity-temperature depth profiles delineating sharp temperature gradients over vertical distances of ∼5–15 m at depths over which reflections occur. Fine structure from both thermohaline intrusions and internal wave strains is imaged. Low-amplitude acoustic reflections correspond to temperature changes as small as 0.03°C implying that seismic reflection methods can image even weak fine structure.
-
ArticleStructure and serpentinization of the subducting Cocos plate offshore Nicaragua and Costa Rica(American Geophysical Union, 2011-06-22) Van Avendonk, Harm J. A. ; Holbrook, W. Steven ; Lizarralde, Daniel ; Denyer, P.The Cocos plate experiences extensional faulting as it bends into the Middle American Trench (MAT) west of Nicaragua, which may lead to hydration of the subducting mantle. To estimate the along strike variations of volatile input from the Cocos plate into the subduction zone, we gathered marine seismic refraction data with the R/V Marcus Langseth along a 396 km long trench parallel transect offshore of Nicaragua and Costa Rica. Our inversion of crustal and mantle seismic phases shows two notable features in the deep structure of the Cocos plate: (1) Normal oceanic crust of 6 km thickness from the East Pacific Rise (EPR) lies offshore Nicaragua, but offshore central Costa Rica we find oceanic crust from the northern flank of the Cocos Nazca (CN) spreading center with more complex seismic velocity structure and a thickness of 10 km. We attribute the unusual seismic structure offshore Costa Rica to the midplate volcanism in the vicinity of the Galápagos hot spot. (2) A decrease in Cocos plate mantle seismic velocities from ∼7.9 km/s offshore Nicoya Peninsula to ∼6.9 km/s offshore central Nicaragua correlates well with the northward increase in the degree of crustal faulting outboard of the MAT. The negative seismic velocity anomaly reaches a depth of ∼12 km beneath the Moho offshore Nicaragua, which suggests that larger amounts of water are stored deep in the subducting mantle lithosphere than previously thought. If most of the mantle low velocity zone can be interpreted as serpentinization, the amount of water stored in the Cocos plate offshore central Nicaragua may be about 2.5 times larger than offshore Nicoya Peninsula. Hydration of oceanic lithosphere at deep sea trenches may be the most important mechanism for the transfer of aqueous fluids to volcanic arcs and the deeper mantle.
-
PreprintCrustal structure across the Grand Banks–Newfoundland Basin Continental Margin – II. Results from a seismic reflection profile( 2006-03-03) Lau, K. W. Helen ; Louden, Keith E. ; Deemer, Sharon ; Hall, Jeremy ; Hopper, John R. ; Tucholke, Brian E. ; Holbrook, W. Steven ; Larsen, Hans ChristianNew multi-channel seismic (MCS) reflection data were collected over a 565km transect covering the non-volcanic rifted margin of the central eastern Grand Banks and the Newfoundland Basin in the northwestern Atlantic. Three major crustal zones are interpreted from west to east over the seaward 350-km of the profile: (1) continental crust; (2) transitional basement; (3) oceanic crust. Continental crust thins over a wide zone (~160 km) by forming a large rift basin (Carson Basin) and seaward fault block, together with a series of smaller fault blocks eastward beneath the Salar and Newfoundland basins. Analysis of selected previous reflection profiles (Lithoprobe 85-4, 85-2 and Conrad NB-1) indicates that prominent landward-dipping reflections observed under the continental slope are a regional phenomenon. They define the landward edge of a deep serpentinized mantle layer, which underlies both extended continental crust and transitional basement. The 80-km-wide transitional basement is defined landward by a basement high that may consist of serpentinized peridotite and seaward by a pair of basement highs of unknown crustal origin. Flat and unreflective transitional basement most likely is exhumed, serpentinized mantle, although our results do not exclude the possibility of anomalously thinned oceanic crust. A Moho reflection below interpreted oceanic crust is first observed landward of magnetic anomaly M4, 230 km from the shelf break. Extrapolation of ages from chron M0 to the edge of interpreted oceanic crust suggests that the onset of seafloor spreading was ~138Ma (Valanginian) in the south (southern Newfoundland Basin) to ~125Ma (Barremian-Aptian boundary) in the north (Flemish Cap), comparable to those proposed for the conjugate margins.
-
ArticleImages of internal tides near the Norwegian continental slope(American Geophysical Union, 2009-12-31) Holbrook, W. Steven ; Fer, Ilker ; Schmitt, Raymond W.Internal tides, or internal gravity waves propagating at tidal frequencies, play an important role in ocean mixing but are challenging to detect and map over large spatial sections in the ocean's interior. We present seismic images of oceanic finestructure in the Norwegian Sea that demonstrate that semidiurnal (M2) internal tidal beams can be seismically imaged. We observe bands of seismic reflections that cross isotherms and closely mimic the expected internal tide ray characteristic over hundreds of meters vertically and tens of km laterally, in an area where critical seafloor slopes are common. Coincident temperature and density profiles show that the reflections come from reversible finestructure caused by internal wave strains. Where the beams intersect the seafloor, indications of enhanced mixing are present, including finestructure disruption and enhanced internal wave energy. These results suggest that seismic oceanography can be an effective tool in studies of ocean mixing by internal tides.
-
PreprintVariation in styles of rifting in the Gulf of California( 2007-06-18) Lizarralde, Daniel ; Axen, Gary J. ; Brown, Hillary E. ; Fletcher, John M. ; Gonzalez-Fernandez, Antonio ; Harding, Alistair J. ; Holbrook, W. Steven ; Kent, Graham M. ; Paramo, Pedro ; Sutherland, Fiona ; Umhoefer, Paul J.The rifting of continental lithosphere is a fundamental solid-earth process that leads to the formation of rifted continental margins and ocean basins. Understanding of this process comes from observations of the geometry of rifted margins and the magmatism resulting from rifting, which inform us about the strength of the lithosphere, the state of the underlying mantle, and the transition from rifting to seafloor spreading. Here we describe results from the PESCADOR seismic experiment in the southern Gulf of California and present the first crustal-scale images across conjugate margins of multiple segments within a single rift that has reached the stage of oceanic spreading. A surprisingly large variation in rifting style and magmatism is observed between these segments, from wide rifting with minor syn-rift magmatism to narrow rifting in magmatically robust segments. These differences encompass much of the variation observed across nearly all other non-end-member continental margins. The characteristics of magmatic endmember margins are typically explained in terms of mantle temperature. Our explanations for the variation in the Gulf of California, in contrast, invoke mantle depletion to account for wide, magma-poor rifting and mantle fertility and possibly the influence of sediments to account for robust rift and post-rift magmatism in the Gulf of California. These factors may vary laterally over small distances in regions that have transitioned from convergence to extension, as is the case for the Gulf of California and many other rifts.
-
ArticleSeismic velocity structure of the rifted margin of the eastern Grand Banks of Newfoundland, Canada(American Geophysical Union, 2006-11-17) Van Avendonk, Harm J. A. ; Holbrook, W. Steven ; Nunes, Gregory T. ; Shillington, Donna J. ; Tucholke, Brian E. ; Louden, Keith E. ; Larsen, Hans Christian ; Hopper, John R.We present a compressional seismic velocity profile of the crust of the eastern margin of the Grand Banks of Newfoundland, Canada. This velocity model was obtained by a tomographic inversion of wide-angle data recorded on a linear array of 24 ocean-bottom seismometers (OBSs). At the landward side, we imaged a crustal thickness of 27 km in Flemish Pass and beneath Beothuk Knoll, which is thinner than the 35-km-thick crust of the central Grand Banks. We therefore assume that the eastern rim of the Grand Banks stretched uniformly by 25%. Farther seaward, the continental crust tapers rapidly beneath the continental slope to ~6 km thickness. In the distal margin we find a 60-km-wide zone with seismic velocities between 5.0 and 6.5 km/s that thins to the southeast from 6 km to 2 km, which we interpret as highly extended continental crust. Contrary to other seismic studies of the margins of the Grand Banks, we find seismic velocities of 8 km/s and higher beneath this thin crustal layer in the continent-ocean transition. We conclude that mantle was locally emplaced at shallow levels without significant hydration from seawater, or serpentinized mantle was removed along a décollement in the final stages of continental rifting. The outer edge of highly extended continental crust borders a 25-km-wide zone where seismic velocities increase gradually from 6.3 km/s just below the top of acoustic basement to 7.7 km/s at 5 km below basement. We interpret this area as a relatively narrow zone of exhumed and serpentinized continental mantle. Seawards, we imaged a thin and laterally heterogeneous layer with a seismic velocity that increases sharply from 5.0 km/s in basement ridges to 7.0 km/s at its base, overlying mantle velocities between 7.8 and 8.2 km/s. We interpret this area as unroofed mantle and very thin oceanic crust that formed at an incipient, magmastarved, ultraslow spreading ridge. A comparison of the conjugate rifted margins of the eastern Grand Banks and the Iberia Abyssal Plain show that they exhibit a similar seaward progression from continental crust to mantle to oceanic crust. This indicates that before continental breakup, rifting exhumed progressively deeper sections of the continental lithosphere on both conjugate margins. A comparison between the continent-ocean transition of the Grand Banks and Flemish Cap shows that the final phase of continental rifting and the formation of the first oceanic crust required more time at the Grand Banks margin than at the southeastern margin of Flemish Cap.
-
ArticleSeismic structure of the southern Gulf of California from Los Cabos block to the East Pacific Rise(American Geophysical Union, 2008-03-15) Paramo, Pedro ; Holbrook, W. Steven ; Brown, Hillary E. ; Lizarralde, Daniel ; Fletcher, John M. ; Umhoefer, Paul J. ; Kent, Graham M. ; Harding, Alistair J. ; Gonzalez, A. ; Axen, Gary J.Multichannel reflection and coincident wide-angle seismic data collected during the 2002 Premier Experiment, Sea of Cortez, Addressing the Development of Oblique Rifting (PESCADOR) experiment provide the most detailed seismic structure to date of the southern Gulf of California. Multichannel seismic (MCS) data were recorded with a 6-km-long streamer, 480-channel, aboard the R/V Maurice Ewing, and wide-angle data was recorded by 19 instruments spaced every ∼12 km along the transect. The MCS and wide-angle data reveal the seismic structure across the continent-ocean transition of the rifted margin. Typical continental and oceanic crust are separated by a ∼75-km-wide zone of extended continental crust dominated by block-faulted basement. Little lateral variation in crustal thicknesses and seismic velocities is observed in the oceanic crust, suggesting a constant rate of magmatic productivity since seafloor spreading began. Oceanic crustal thickness and mean crustal velocities suggest normal mantle temperature (1300°C) and passive mantle upwelling at the early stages of seafloor spreading. The crustal thickness, width of extended continental crust, and predicted temperature conditions all indicate a narrow rift mode of extension. On the basis of upper and lower crust stretching factors, an excess of lower crust was found in the extended continental crust. Total extension along transect 5W is estimated to be ∼35 km. Following crustal extension, new oceanic crust ∼6.4-km-thick was formed at a rate of ∼48 mm a−1 to accommodate plate separation.
-
ArticleEvidence for asymmetric nonvolcanic rifting and slow incipient oceanic accretion from seismic reflection data on the Newfoundland margin(American Geophysical Union, 2006-09-22) Shillington, Donna J. ; Holbrook, W. Steven ; Van Avendonk, Harm J. A. ; Tucholke, Brian E. ; Hopper, John R. ; Louden, Keith E. ; Larsen, Hans Christian ; Nunes, Gregory T.Prestack depth migrations of seismic reflection data collected around the Ocean Drilling Program (ODP) Leg 210 transect on the Newfoundland nonvolcanic margin delineate three domains: (1) extended continental crust, (2) transitional basement, and (3) apparent slow spreading oceanic basement beyond anomaly M3 and indicate first-order differences between this margin and its well-studied conjugate, the Iberia margin. Extended continental crust thins abruptly with few observed faults, in stark contrast with the system of seaward dipping normal faults and detachments imaged within continental crust off Iberia. Transition zone basement typically appears featureless in seismic reflection profiles, but where its character can be discerned, it does not resemble most images of exhumed peridotite off Iberia. Seismic observations allow three explanations for transitional basement: (1) slow spreading oceanic basement produced by unstable early seafloor spreading, (2) exhumed, serpentinized mantle with different properties from that off Iberia, and (3) thinned continental crust, likely emplaced by one or more detachment or rolling-hinge faults. Although we cannot definitively discriminate between these possibilities, seismic reflection profiles together with coincident wide-angle seismic refraction data tentatively suggest that the majority of transitional basement is thinned continental crust emplaced during the late stages of rifting. Finally, seismic profiles image abundant faults and significant basement topography in apparent oceanic basement. These observations, together with magnetic anomaly interpretations and the recovery of mantle peridotites at ODP Site 1277, appear to be best explained by the interplay of extension and magmatism during the transition from nonvolcanic rifting to a slow spreading oceanic accretion system.
-
ArticleEstimating oceanic turbulence dissipation from seismic images(American Meteorological Society, 2013-08) Holbrook, W. Steven ; Fer, Ilker ; Schmitt, Raymond W. ; Lizarralde, Daniel ; Klymak, Jody M. ; Helfrich, L. Cody ; Kubichek, RobertSeismic images of oceanic thermohaline finestructure record vertical displacements from internal waves and turbulence over large sections at unprecedented horizontal resolution. Where reflections follow isopycnals, their displacements can be used to estimate levels of turbulence dissipation, by applying the Klymak–Moum slope spectrum method. However, many issues must be considered when using seismic images for estimating turbulence dissipation, especially sources of random and harmonic noise. This study examines the utility of seismic images for estimating turbulence dissipation in the ocean, using synthetic modeling and data from two field surveys, from the South China Sea and the eastern Pacific Ocean, including the first comparison of turbulence estimates from seismic images and from vertical shear. Realistic synthetic models that mimic the spectral characteristics of internal waves and turbulence show that reflector slope spectra accurately reproduce isopycnal slope spectra out to horizontal wavenumbers of 0.04 cpm, corresponding to horizontal wavelengths of 25 m. Using seismic reflector slope spectra requires recognition and suppression of shot-generated harmonic noise and restriction of data to frequency bands with signal-to-noise ratios greater than about 4. Calculation of slope spectra directly from Fourier transforms of the seismic data is necessary to determine the suitability of a particular dataset to turbulence estimation from reflector slope spectra. Turbulence dissipation estimated from seismic reflector displacements compares well to those from 10-m shear determined by coincident expendable current profiler (XCP) data, demonstrating that seismic images can produce reliable estimates of turbulence dissipation in the ocean, provided that random noise is minimal and harmonic noise is removed.
-
ArticleCorrection to “Evidence for asymmetric nonvolcanic rifting and slow incipient oceanic accretion from seismic reflection data on the Newfoundland margin”(American Geophysical Union, 2006-12-09) Shillington, Donna J. ; Holbrook, W. Steven ; Van Avendonk, Harm J. A. ; Tucholke, Brian E. ; Hopper, John R. ; Louden, Keith E. ; Larsen, Hans Christian ; Nunes, Gregory T.
-
ArticleMapping turbulent diffusivity associated with oceanic internal lee waves offshore Costa Rica(Copernicus Publications on behalf of the European Geosciences Union, 2016-04-26) Fortin, Will F. J. ; Holbrook, W. Steven ; Schmitt, Raymond W.Breaking internal waves play a primary role in maintaining the meridional overturning circulation. Oceanic lee waves are known to be a significant contributor to diapycnal mixing associated with internal wave dissipation, but direct measurement is difficult with standard oceanographic sampling methods due to the limited spatial extent of standing lee waves. Here, we present an analysis of oceanic internal lee waves observed offshore eastern Costa Rica using seismic imaging and estimate the turbulent diffusivity via a new seismic slope spectrum method that extracts diffusivities directly from seismic images, using tracked reflections only to scale diffusivity values. The result provides estimates of turbulent diffusivities throughout the water column at scales of a few hundred meters laterally and 10 m vertically. Synthetic tests demonstrate the method's ability to resolve turbulent structures and reproduce accurate diffusivities. A turbulence map of our seismic section in the western Caribbean shows elevated turbulent diffusivities near rough seafloor topography as well as in the mid-water column where observed lee wave propagation terminates. Mid-water column hotspots of turbulent diffusivity show levels 5 times higher than surrounding waters and 50 times greater than typical open-ocean diffusivities. This site has steady currents that make it an exceptionally accessible laboratory for the study of lee-wave generation, propagation, and decay.
-
ArticleSeismic estimates of turbulent diffusivity and evidence of nonlinear internal wave forcing by geometric resonance in the South China Sea(John Wiley & Sons, 2017-10-25) Fortin, Will F. J. ; Holbrook, W. Steven ; Schmitt, Raymond W.The Luzon Passage generates some of the largest amplitude internal waves in the global ocean as the result of coupling between strong tides, strong stratification, and topography. These internal waves propagate into the South China Sea (SCS) and develop into soliton-like internal wave pulses that are observed by moored instruments and satellite backscatter data. Despite the observation of these waves, little is known of the mechanisms related to their evolution into nonlinear wave pulses. Using seismic data, we find evidence that the geometry of bathymetric conditions between the Heng-Chun and Lan-Yu ridges drive nonlinear internal wave pulse generation. We produce three seismic images and associated maps of turbulent diffusivity to investigate structure around the two ridges and into the SCS. We do not observe large amplitude soliton-like internal waves between the ridges, but do observe one outside the ridges, a finding in accord with the interpretation that wave pulses form due to geometrical resonance. Additionally, we find no evidence for lee wave activity above the ridges in either the seismic images or associated turbulence maps, suggesting an unlikelihood of hydraulic jump driven generation around the ridges. Our results show increased levels of turbulent diffusivity (1) in deep water below 1000 m, (2) associated with internal tide pulses, and (3) near the steep slopes of the Heng-Chun and Lan-Yu ridges as explored in this paper.
-
ArticleA deep seismic investigation of the Flemish Cap margin: implications for the origin of deep reflectivity and evidence for asymmetric break-up between Newfoundland and Iberia(Blackwell Publishing, 2006-02-21) Hopper, John R. ; Funck, Thomas ; Tucholke, Brian E. ; Louden, Keith E. ; Holbrook, W. Steven ; Larsen, Hans ChristianSeismic reflection and refraction data were acquired along the southeast margin of Flemish Cap at a position conjugate to drilling and geophysical surveys across the Galicia Bank margin. The data document first-order asymmetry during final break-up between Newfoundland and Iberia. An abrupt necking profile of continental crust observed off Flemish Cap contrasts strongly with gradual tapering on the conjugate margin. There is no evidence beneath Flemish Cap for a final phase of continental extension that resulted in thin continental crust underlain by a strong 'S'-like reflection, which indicates that this mode of extension occurred only on the Galicia Bank margin. Compelling evidence for a broad zone of exhumed mantle or for peridotite ridges is also lacking along the Flemish Cap margin. Instead, anomalously thin, 3–4-km-thick oceanic crust is observed. This crust is highly tectonized and broken up by high-angle normal faulting. The thin crust and rift structures that resemble the abandoned spreading centre in the Labrador sea suggest that initial seafloor spreading was affected by processes observed in present-day ultra-slow spreading environments. Landwards, Flemish Cap is underlain by a highly reflective lower crust. The reflectivity most likely originates from older Palaeozoic orogenic structures that are unrelated to extension and break-up tectonics.
-
ArticleAlong-strike structure of the Costa Rican convergent margin from seismic a refraction/reflection survey : evidence for underplating beneath the inner forearc(John Wiley & Sons, 2016-02-24) St. Clair, James ; Holbrook, W. Steven ; Van Avendonk, Harm J. A. ; Lizarralde, DanielThe convergent margin offshore Costa Rica shows evidence of subsidence due to subduction erosion along the outer forearc and relatively high rates of uplift (∼3–6 mm/yr) along the coast. Recently erupted arc lavas exhibit a low 10Be signal, suggesting that although nearly the entire package of incoming sediments enters the subduction zone, very little of that material is carried directly with the downgoing Cocos plate to the magma generating depths of the mantle wedge. One mechanism that would explain both the low 10Be and the coastal uplift is the underplating of sediments, tectonically eroded material, and seamounts beneath the inner forearc. We present results of a 320 km long, trench-parallel seismic reflection and refraction study of the Costa Rican forearc. The primary observations are (1) margin perpendicular faulting of the basement, (2) thickening of the Cocos plate to the northwest, and (3) two weak bands of reflections in the multichannel seismic (MCS) reflection image with travel times similar to the top of the subducting Cocos plate. The modeled depths to these reflections are consistent with an ∼40 km long, 1–3 km thick region of underplated material ∼15 km beneath some of the highest observed coastal uplift rates in Costa Rica.
-
ArticleComposition and structure of the central Aleutian island arc from arc-parallel wide-angle seismic data(American Geophysical Union, 2004-10-21) Shillington, Donna J. ; Van Avendonk, Harm J. A. ; Holbrook, W. Steven ; Kelemen, Peter B. ; Hornbach, Matthew J.New results from wide-angle seismic data collected parallel to the central Aleutian island arc require an intermediate to mafic composition for the middle crust and a mafic to ultramafic composition for the lower crust and yield lateral velocity variations that correspond to arc segmentation and trends in major element geochemistry. The 3-D ray tracing/2.5-D inversion of this sparse wide-angle data set, which incorporates independent phase interpretations and new constraints on shallow velocity structure, produces a faster and smoother result than a previously published velocity model. Middle-crustal velocities of 6.5–7.3 km/s over depths of ∼10–20 km indicate an andesitic to basaltic composition. High lower-crustal velocities of 7.3–7.7 km/s over depths of ∼20–35 km are interpreted as ultramafic-mafic cumulates and/or garnet granulites. The total crustal thickness is 35–37 km. This result indicates that the Aleutian island arc has higher velocities, and thus more mafic compositions, than average continental crust, implying that significant modifications would be required for this arc to be a suitable building block for continental crust. Lateral variations in average crustal velocity (below 10 km) roughly correspond to trends in major element geochemistry of primitive (Mg # > 0.6) lavas. The highest lower-crustal velocities (and presumably most mafic material) are detected in the center of an arc segment, between Unmak and Unalaska Islands, implying that arc segmentation exerts control over crustal composition.
-
PreprintCrustal structure across the Grand Banks–Newfoundland Basin Continental Margin – I. Results from a seismic refraction profile( 2006-03-03) Lau, K. W. Helen ; Louden, Keith E. ; Funck, Thomas ; Tucholke, Brian E. ; Holbrook, W. Steven ; Hopper, John R. ; Larsen, Hans ChristianA P-wave velocity model along a 565-km-long profile across the Grand Banks/Newfoundland basin rifted margin is presented. Continental crust ~36-kmthick beneath the Grand Banks is divided into upper (5.8-6.25 km/s), middle (6.3- 6.53 km/s) and lower crust (6.77-6.9 km/s), consistent with velocity structure of Avalon zone Appalachian crust. Syn-rift sediment sequences 6-7-km thick occur in two primary layers within the Jeanne d’Arc and the Carson basins (~3 km/s in upper layer; ~5 km/s in lower layer). Abrupt crustal thinning (Moho dip ~ 35º) beneath the Carson basin and more gradual thinning seaward forms a 170-km-wide zone of rifted continental crust. Within this zone, lower and middle continental crust thin preferentially seaward until they are completely removed, while very thin (<3 km) upper crust continues ~60 km farther seaward. Adjacent to the continental crust, high velocity gradients (0.5-1.5 s-1) define an 80-km-wide zone of transitional basement that can be interpreted as exhumed, serpentinized mantle or anomalously thin oceanic crust, based on its velocity model alone. We prefer the exhumed-mantle interpretation after considering the non-reflective character of the basement and the low amplitude of associated magnetic anomalies, which are atypical of oceanic crust. Beneath both the transitional basement and thin (<6 km) continental crust, a 200-kmwide zone with reduced mantle velocities (7.6-7.9 km/s) is observed, which is interpreted as partially (<10%) serpentinized mantle. Seaward of the transitional basement, 2- to 6-km-thick crust with layer 2 (4.5-6.3 km/s) and layer 3 (6.3-7.2 km/s) velocities is interpreted as oceanic crust. Comparison of our crustal model with profile IAM-9 across the Iberia Abyssal Plain on the conjugate Iberia margin suggests asymmetrical continental breakup in which a wider zone of extended continental crust has been left on the Newfoundland side.
-
ArticleLimited mantle hydration by bending faults at the Middle America Trench(American Geophysical Union, 2020-12-15) Miller, Nathaniel C. ; Lizarralde, Daniel ; Collins, John A. ; Holbrook, W. Steven ; Van Avendonk, Harm J. A.Seismic anisotropy measurements show that upper mantle hydration at the Middle America Trench (MAT) is limited to serpentinization and/or water in fault zones, rather than distributed uniformly. Subduction of hydrated oceanic lithosphere recycles water back into the deep mantle, drives arc volcanism, and affects seismicity at subduction zones. Constraining the extent of upper mantle hydration is an important part of understanding many fundamental processes on Earth. Substantially reduced seismic velocities in tomography suggest that outer rise plate‐bending faults provide a pathway for seawater to rehydrate the slab mantle just prior to subduction. Estimates of outer‐rise hydration based on tomograms vary significantly, with some large enough to imply that, globally, subduction has consumed more than two oceans worth of water during the Phanerozoic. We found that, while the mean upper mantle wavespeed is reduced at the MAT outer rise, the amplitude and orientation of inherited anisotropy are preserved at depths >1 km below the Moho. At shallower depths, relict anisotropy is replaced by slowing in the fault‐normal direction. These observations are incompatible with pervasive hydration but consistent with models of wave propagation through serpentinized fault zones that thin to <100‐m in width at depths >1 km below Moho. Confining hydration to fault zones reduces water storage estimates for the MAT upper mantle from ∼3.5 wt% to <0.9 wt% H20. Since the intermediate thermal structure in the ∼24 Myr‐old MAT slab favors serpentinization, limited hydration suggests that fault mechanics are the limiting factor, not temperatures. Subducting mantle may be similarly dry globally.
-
ArticleCrustal structure of the ocean-continent transition at Flemish Cap : seismic refraction results(American Geophysical Union, 2003-11-19) Funck, Thomas ; Hopper, John R. ; Larsen, Hans Christian ; Louden, Keith E. ; Tucholke, Brian E. ; Holbrook, W. StevenWe conducted a seismic refraction experiment across Flemish Cap and into the deep basin east of Newfoundland, Canada, and developed a velocity model for the crust and mantle from forward and inverse modeling of data from 25 ocean bottom seismometers and dense air gun shots. The continental crust at Flemish Cap is 30 km thick and is divided into three layers with P wave velocities of 6.0–6.7 km/s. Across the southeast Flemish Cap margin, the continental crust thins over a 90-km-wide zone to only 1.2 km. The ocean-continent boundary is near the base of Flemish Cap and is marked by a fault between thinned continental crust and 3-km-thick crust with velocities of 4.7–7.0 km/s interpreted as crust from magma-starved oceanic accretion. This thin crust continues seaward for 55 km and thins locally to ~1.5 km. Below a sediment cover (1.9–3.1 km/s), oceanic layer 2 (4.7–4.9 km/s) is ~1.5 km thick, while layer 3 (6.9 km/s) seems to disappear in the thinnest segment of the oceanic crust. At the seawardmost end of the line the crust thickens to ~6 km. Mantle with velocities of 7.6–8.0 km/s underlies both the thin continental and thin oceanic crust in an 80-km-wide zone. A gradual downward increase to normal mantle velocities is interpreted to reflect decreasing degree of serpentinization with depth. Normal mantle velocities of 8.0 km/s are observed ~6 km below basement. There are major differences compared to the conjugate Galicia Bank margin, which has a wide zone of extended continental crust, more faulting, and prominent detachment faults. Crust formed by seafloor spreading appears symmetric, however, with 30-km-wide zones of oceanic crust accreted on both margins beginning about 4.5 m.y. before formation of magnetic anomaly M0 (~118 Ma).
-
ArticleSeismic evidence for fluids in fault zones on top of the subducting Cocos Plate beneath Costa Rica(John Wiley & Sons, 2010-03-09) Van Avendonk, Harm J. A. ; Holbrook, W. Steven ; Lizarralde, Daniel ; Mora, Mauricio M. ; Harder, Steven H. ; Bullock, Andrew D. ; Alvarado, Guillermo E. ; Ramirez, Carlos J.In the 2005 TICOCAVA explosion seismology study in Costa Rica we observed crustal turning waves with a dominant frequency of ~10 Hz on a linear array of short-period seismometers from the Pacific Ocean to the Caribbean Sea. On one of the shot records, from Shot 21 in the backarc of the Cordillera Central, we also observed two seismic phases with an unusually high dominant frequency (~20 Hz). These two phases were recorded in the forearc region of central Costa Rica and arrived ~7 s apart and 30 to 40 s after the detonation of Shot 21. We considered the possibility that these secondary arrivals were produced by a local earthquake that may have happened during the active-source seismic experiment. Such high-frequency phases following Shot 21 were not recorded after Shots 22, 23, and 24, all in the backarc of Costa Rica, which might suggest that they were produced by some other source. However, earthquake dislocation models cannot produce seismic waves of such high frequency with significant amplitude. In addition, we would have expected to see more arrivals from such an earthquake on other seismic stations in central Costa Rica. We therefore investigate whether the high-frequency arrivals may be the result of a deep seismic reflection from the subducting Cocos plate. The timing of these phases is consistent with a shear wave from Shot 21 that was reflected as a compressional (SxP) and a shear (SxS) wave at the top of the subducting Cocos slab between 35 and 55 km depth. The shift in dominant frequency from ~10 Hz in the downgoing seismic wave to ~20 Hz in the reflected waves requires a particular seismic structure at the interface between the subducting slab and the forearc mantle in order to produce a substantial increase in reflection coefficients with frequency. The spectral amplitude characteristics of the SxP and SxS phases from Shot 21 are consistent with a very high Vp/Vs ratio of 6 in ~5 m thick, slab-parallel layers. This result suggests that a system of thin shear zones near the plate interface beneath the forearc is occupied by hydrous fluids under near-lithostatic conditions. The overpressured shear zone probably takes up fluids from the downgoing slab, and it may control the lower limit of the seismogenic zone.
-
ArticleSeismic imaging of a thermohaline staircase in the western tropical North Atlantic(Copernicus Publications on behalf of the European Geosciences Union, 2010-07-02) Fer, Ilker ; Nandi, Papia ; Holbrook, W. Steven ; Schmitt, Raymond W. ; Paramo, PedroMultichannel seismic data acquired in the Lesser Antilles in the western tropical North Atlantic indicate that the seismic reflection method has imaged an oceanic thermohaline staircase. Synthetic acoustic modeling using measured density and sound speed profiles corroborates inferences from the seismic data. In a small portion of the seismic image, laterally coherent, uniform layers are present at depths ranging from 550–700 m and have a separation of ~20 m, with thicknesses increasing with depth. The reflection coefficient, a measure of the acoustic impedance contrasts across these reflective interfaces, is one order of magnitude greater than background noise. Hydrography sampled in previous surveys suggests that the layers are a permanent feature of the region. Spectral analysis of layer horizons in the thermohaline staircase indicates that internal wave activity is anomalously low, suggesting weak internal wave-induced turbulence. Results from two independent measurements, the application of a finescale parameterization to observed high-resolution velocity profiles and direct measurements of turbulent dissipation rate, confirm these low levels of turbulence. The lack of internal wave-induced turbulence may allow for the maintenance of the staircase or may be due to suppression by the double-diffusive convection within the staircase. Our observations show the potential for seismic oceanography to contribute to an improved understanding of occurrence rates and the geographical distribution of thermohaline staircases, and should thereby improve estimates of vertical mixing rates ascribable to salt fingering in the global ocean.