Reconstructing the thermal structure of the upper ocean : insights from planktic foraminifera shell chemistry and alkenones in modern sediments of the tropical eastern Indian Ocean

Thumbnail Image
Date
2011-09-10
Authors
Mohtadi, Mahyar
Oppo, Delia W.
Luckge, Andreas
De Pol-Holz, Ricardo
Steinke, Stephan
Groeneveld, Jeroen
Hemme, Nils
Hebbeln, Dierk
Linked Authors
Alternative Title
Date Created
Location
DOI
10.1029/2011PA002132
Related Materials
Replaces
Replaced By
Keywords
Indian Ocean
Mg/Ca
Alkenone
Oxygen isotopes
Planktic foraminifera
Thermal structure
Abstract
Shell chemistry of planktic foraminifera and the alkenone unsaturation index in 69 surface sediment samples in the tropical eastern Indian Ocean off West and South Indonesia were studied. Results were compared to modern hydrographic data in order to assess how modern environmental conditions are preserved in sedimentary record, and to determine the best possible proxies to reconstruct seasonality, thermal gradient and upper water column characteristics in this part of the world ocean. Our results imply that alkenone-derived temperatures record annual mean temperatures in the study area. However, this finding might be an artifact due to the temperature limitation of this proxy above 28°C. Combined study of shell stable oxygen isotope and Mg/Ca ratio of planktic foraminifera suggests that Globigerinoides ruber sensu stricto (s.s.), G. ruber sensu lato (s.l.), and G. sacculifer calcify within the mixed-layer between 20 m and 50 m, whereas Globigerina bulloides records mixed-layer conditions at ∼50 m depth during boreal summer. Mean calcifications of Pulleniatina obliquiloculata, Neogloboquadrina dutertrei, and Globorotalia tumida occur at the top of the thermocline during boreal summer, at ∼75 m, 75–100 m, and 100 m, respectively. Shell Mg/Ca ratios of all species show a significant correlation with temperature at their apparent calcification depths and validate the application of previously published temperature calibrations, except for G. tumida that requires a regional Mg/Ca-temperature calibration (Mg/Ca = 0.41 exp (0.068*T)). We show that the difference in Mg/Ca-temperatures of the mixed-layer species and the thermocline species, particularly between G. ruber s.s. (or s.l.) and P. obliquiloculata, can be applied to track changes in the upper water column stratification. Our results provide critical tools for reconstructing past changes in the hydrography of the study area and their relation to monsoon, El Niño-Southern Oscillation, and the Indian Ocean Dipole Mode.
Description
Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 26 (2011): PA3219, doi:10.1029/2011PA002132.
Embargo Date
Citation
Paleoceanography 26 (2011): PA3219
Cruises
Cruise ID
Cruise DOI
Vessel Name