High-frequency acoustic scattering from turbulent oceanic microstructure : the importance of density fluctuations

Thumbnail Image
Date
2003-11
Authors
Lavery, Andone C.
Schmitt, Raymond W.
Stanton, Timothy K.
Linked Authors
Alternative Title
Date Created
Location
DOI
10.1121/1.1614258
Related Materials
Replaces
Replaced By
Keywords
Acoustic wave scattering
Underwater acoustic propagation
Oceanography
Remote sensing
Oceanographic techniques
Abstract
Acoustic scattering techniques provide a unique and powerful tool to remotely investigate the physical properties of the ocean interior over large spatial and temporal scales. With high-frequency acoustic scattering it is possible to probe physical processes that occur at the microstructure scale, spanning submillimeter to centimeter scale processes. An acoustic scattering model for turbulent oceanic microstructure is presented in which the current theory, which only accounts for fluctuations in the sound speed, has been extended to include fluctuations in the density as well. The inclusion of density fluctuations results in an expression for the scattering cross section per unit volume, σv, that is explicitly dependent on the scattering angle. By relating the variability in the density and sound speed to random fluctuations in oceanic temperature and salinity, σv has been expressed in terms of the temperature and salinity wave number spectra, and the temperature-salinity co-spectrum. A Batchelor spectrum for temperature and salinity, which depends on parameters such as the dissipation rates of turbulent kinetic energy and temperature variance, has been used to evaluate σv. Two models for the temperature-salinity co-spectrum have also been used. The predictions indicate that fluctuations in the density could be as important in determining backscattering as fluctuations in the sound speed. Using data obtained in the ocean with a high resolution vertical microstructure profiler, it is predicted that scattering from oceanic microstructure can be as strong as scattering from zooplankton.
Description
Author Posting. © Acoustical Society of America, 2003. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 114 (2003): 2685-2697, doi:10.1121/1.1614258.
Embargo Date
Citation
Journal of the Acoustical Society of America 114 (2003): 2685-2697
Cruises
Cruise ID
Cruise DOI
Vessel Name