A modeling study of the seasonal oxygen budget of the global ocean

Thumbnail Image
Date
2007-05-09
Authors
Jin, X.
Najjar, Raymond G.
Louanchi, F.
Doney, Scott C.
Linked Authors
Alternative Title
Date Created
Location
DOI
10.1029/2006JC003731
Related Materials
Replaces
Replaced By
Keywords
New production
Remineralization
Dissolved oxygen
Abstract
An ecosystem model embedded in a global ocean general circulation model is used to quantify roles of biological and physical processes on seasonal oxygen variations. We find that the thermally induced seasonal net outgassing (SNO) of oxygen is overestimated by about 30% if gas phase equilibrium is assumed, and we find that seasonal variations in thermocline oxygen due to biology are approximated well using the oxygen anomaly. Outside the tropics and the north Indian Ocean, biological SNO is, on average, 56% of net community production (defined as net oxygen production above 76 m) during the outgassing period and 35% of annual net community production. In the same region the seasonal drawdown of the oxygen anomaly within the upper thermocline (76–500 m) is 76% of the remineralization during the drawdown and 48% of annual remineralization. Applying model-derived relationships to observed O2 climatologies and using independent estimates for tropical and monsoonal systems, we estimate global net community production to be 14.9 ± 2.5 Pg C yr−1.
Description
Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C05017, doi:10.1029/2006JC003731.
Embargo Date
Citation
Journal of Geophysical Research 112 (2007): C05017
Cruises
Cruise ID
Cruise DOI
Vessel Name