Young off-axis volcanism along the ultraslow-spreading Southwest Indian Ridge
Young off-axis volcanism along the ultraslow-spreading Southwest Indian Ridge
Date
2010-02-09
Authors
Standish, Jared J.
Sims, Kenneth W. W.
Sims, Kenneth W. W.
Linked Authors
Alternative Title
Citable URI
As Published
Date Created
Location
DOI
Related Materials
Replaces
Replaced By
Keywords
Abstract
Mid-ocean ridge crustal accretion occurs continuously at all spreading rates
through a combination of magmatic and tectonic processes. Fast to slow spreading
ridges are largely built by adding magma to narrowly focused neovolcanic zones. In
contrast, ultraslow spreading ridge construction significantly relies on tectonic
accretion, which is characterized by thin volcanic crust, emplacement of mantle
peridotite directly to the seafloor, and unique seafloor fabrics with variable
segmentation patterns. While advances in remote imaging have enhanced our
observational understanding of crustal accretion at all spreading rates, temporal
information is required in order to quantitatively understand mid-ocean ridge
construction. However, temporal information does not exist for ultraslow spreading
environments. Here, we utilize U-series eruption ages to investigate crustal
accretion at an ultraslow spreading ridge for the first time. Unexpectedly young
eruption ages throughout the Southwest Indian ridge rift valley indicate that
neovolcanic activity is not confined to the spreading axis, and that magmatic crustal
accretion occurs over a wider zone than at faster spreading ridges. These
observations not only suggest that crustal accretion at ultraslow spreading ridges is
distinct from faster spreading ridges, but also that the magma transport
mechanisms may differ as a function of spreading rate.
Description
Author Posting. © The Authors, 2010. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Geoscience 3 (2010): 286-292, doi:10.1038/ngeo824.