Sims Kenneth W. W.

No Thumbnail Available
Last Name
Sims
First Name
Kenneth W. W.
ORCID

Search Results

Now showing 1 - 12 of 12
  • Preprint
    A new method for the determination of low-level actinium-227 in geological samples
    ( 2012-07-31) Dulaiova, Henrieta ; Sims, Kenneth W. W. ; Charette, Matthew A. ; Prytulak, Julie ; Blusztajn, Jerzy S.
    We developed a new method for the determination of 227Ac in geological samples. The method uses extraction chromatographic techniques and alpha-spectrometry and is applicable for a range of natural matrices. Here we report on the procedure and results of the analysis of water (fresh and seawater) and rock samples. Water samples were acidified and rock samples underwent total dissolution via acid leaching. A DGA (N,N,N’,N’-tetra-n-octyldiglycolamide) extraction chromatographic column was used for the separation of actinium. The actinium fraction was prepared for alpha spectrometric measurement via cerium fluoride micro-precipitation. Recoveries of actinium in water samples were 80±8 % (number of analyses n=14) and in rock samples 70±12 % (n=30). The minimum detectable activities (MDA) were 0.017-0.5 Bq kg-1 for both matrices. Rock sample 227Ac activities ranged from 0.17 to 8.3 Bq kg-1 and water sample activities ranged from below MDA values to 14 Bq kg-1of 227Ac. From the analysis of several standard rock and water samples with the method we found very good agreement between our results and certified values.
  • Preprint
    Young off-axis volcanism along the ultraslow-spreading Southwest Indian Ridge
    ( 2010-02-09) Standish, Jared J. ; Sims, Kenneth W. W.
    Mid-ocean ridge crustal accretion occurs continuously at all spreading rates through a combination of magmatic and tectonic processes. Fast to slow spreading ridges are largely built by adding magma to narrowly focused neovolcanic zones. In contrast, ultraslow spreading ridge construction significantly relies on tectonic accretion, which is characterized by thin volcanic crust, emplacement of mantle peridotite directly to the seafloor, and unique seafloor fabrics with variable segmentation patterns. While advances in remote imaging have enhanced our observational understanding of crustal accretion at all spreading rates, temporal information is required in order to quantitatively understand mid-ocean ridge construction. However, temporal information does not exist for ultraslow spreading environments. Here, we utilize U-series eruption ages to investigate crustal accretion at an ultraslow spreading ridge for the first time. Unexpectedly young eruption ages throughout the Southwest Indian ridge rift valley indicate that neovolcanic activity is not confined to the spreading axis, and that magmatic crustal accretion occurs over a wider zone than at faster spreading ridges. These observations not only suggest that crustal accretion at ultraslow spreading ridges is distinct from faster spreading ridges, but also that the magma transport mechanisms may differ as a function of spreading rate.
  • Article
    Seafloor photo-geology and sonar terrain modeling at the 9°N overlapping spreading center, East Pacific Rise
    (John Wiley & Sons, 2013-12-20) Klein, Emily M. ; White, Scott M. ; Nunnery, James Andrew ; Mason-Stack, Jessica L. ; Wanless, V. Dorsey ; Perfit, Michael R. ; Waters, Christopher L. ; Sims, Kenneth W. W. ; Fornari, Daniel J. ; Zaino, Anne J. ; Ridley, W. Ian
    A fundamental goal in the study of mid-ocean ridges is to understand the relationship between the distribution of melt at depth and seafloor features. Building on geophysical information on subsurface melt at the 9°N overlapping spreading center on the East Pacific Rise, we use terrain modeling (DSL-120A side scan and bathymetry), photo-geology (Jason II and WHOI TowCam), and geochemical data to explore this relationship. Terrain modeling identified four distinct geomorphic provinces with common seafloor characteristics that correspond well to changes in subsurface melt distribution. Visual observations were used to interpret terrain modeling results and to establish a relative seafloor age scale, calibrated with radiometric age dates, to identify areas of recent volcanism. On the east limb, recent eruptions in the north are localized over the margins of the 4 km wide asymmetric melt sill, forming a prominent off-axis pillow ridge. Along the southern east limb, recent eruptions occur along a neovolcanic ridge that hugs the overlap basin and lies several kilometers west of the plunging melt sill. Our results suggest that long-term southward migration of the east limb occurs through a series of diking events with a net southward propagation direction. Examining sites of recent eruptions in the context of geophysical data on melt distribution in the crust and upper mantle suggests melt may follow complex paths from depth to the surface. Overall, our findings emphasize the value of integrating information obtained from photo-geology, terrain modeling, lava geochemistry and petrography, and geophysics to constrain the nature of melt delivery at mid-ocean ridges.
  • Preprint
    Isotopic constraints on the genesis and evolution of basanitic lavas at Haleakala, Island of Maui, Hawaii
    ( 2016-08) Phillips, Erin H. ; Sims, Kenneth W. W. ; Sherrod, David R. ; Salters, Vincent J. M. ; Blusztajn, Jerzy S. ; Dulai, Henrietta
    To understand the dynamics of solid mantle upwelling and melting in the Hawaiian plume, we present new major and trace element data, Nd, Sr, Hf, and Pb isotopic compositions, and 238U-230Th-226Ra and 235U-231Pa-227Ac activities for 13 Haleakala Crater nepheline normative basanites with ages ranging from ~900 to 4100 yr B.P.. These basanites of the Hana Volcanics exhibit an enrichment in incompatible trace elements and a more depleted isotopic signature than similarly aged Hawaiian shield lavas from Kilauea and Mauna Loa. Here we posit that as the Pacific lithosphere beneath the active shield volcanoes moves away from the center of the Hawaiian plume, increased incorporation of an intrinsic depleted component with relatively low 206Pb/204Pb produces the source of the basanites of the Hana Volcanics. Haleakala Crater basanites have average (230Th/238U) of 1.23 (n=13), average age-corrected (226Ra/230Th) of 1.25 (n=13), and average (231Pa/235U) of 1.67 (n=4), significantly higher than Kilauea and Mauna Loa tholeiites. U-series modeling shows that solid mantle upwelling velocity for Haleakala Crater basanites ranges from ~0.7 to 1.0 cm/yr, compared to ~10 to 20 cm/yr for tholeiites and ~1 to 2 cm/yr for alkali basalts. These modeling results indicate that solid mantle upwelling rates and porosity of the melting zone are lower for Hana Volcanics basanites than for shield-stage tholeiites from Kilauea and Mauna Loa and alkali basalts from Hualalai. The melting rate, which is directly proportional to both the solid mantle upwelling rate and the degree of melting, is therefore greatest in the center of the Hawaiian plume and lower on its periphery. Our results indicate that solid mantle upwelling velocity is at least 10 times higher at the center of the plume than at its periphery under Haleakala.
  • Article
    238U-Th-230-Ra-226-Pb-210-Po-210, Th-232-Ra-228, and U-235-Pa-231 constraints on the ages and petrogenesis of Vailulu'u and Malumalu Lavas, Samoa
    (American Geophysical Union, 2008-04-01) Sims, Kenneth W. W. ; Hart, Stanley R. ; Reagan, Mark K. ; Blusztajn, Jerzy S. ; Staudigel, Hubert ; Sohn, Robert A. ; Layne, Graham D. ; Ball, Lary A. ; Andrews, J. E.
    We report 238U-230Th-226Ra-210Pb-210Po, 232Th-228Ra and 235U-231Pa measurements for a suite of 14 geologically and geochemically well-characterized basaltic samples from the Samoan volcanoes Vailulu'u, Malumalu, and Savai'i. Maximum eruption ages based on the presence of parent-daughter disequilibria indicate that Vailulu'u is magmatically productive with young lavas (<8 Ka) resurfacing both its summit crater and lower flanks. 210Pb and 210Po measurements indicate that several flows have erupted within its summit crater in the past 100 years, with the newest observed flow being erupted in November of 2004. For lavas which have eruption ages that are demonstrably young, relative to the half-lives of 230Th, 231Pa, and 226Ra, we interpret their 238U -230Th, 235U-231Pa and 230Th - 226Ra disequilibria in terms of the magmatic processes occurring beneath the Samoan Islands. (230Th/238U) > 1 indicates that garnet is required as a residual phase in the magma sources for all these lavas. The large range of (238U/232Th) and (230Th/232Th) is attributed to long-term source variation. The Samoan basalts are all alkaline basalts and show significant 230Th and 231Pa excesses but limited variability, indicating that they have been derived by small but similar extents of melting. Their (230Th/238U), (231Pa/235U) and Sm/Nd fractionation are consistent with correlations among other ocean island basalt suites (particularly Hawaii) which show that (230Th/238U) and (231Pa/235U) of many OIBS can be explained by simple time-independent models. Interpretation of the 226Ra data requires time-dependent melting models. Both chromatographic porous flow and dynamic melting of a garnet peridotite source can adequately explain the combined U-Th-Ra and U-Pa data for these Samoan basalts. Several young samples from the Vailulu'u summit crater also exhibit significant 210Pb deficits that reflect either shallow magmatic processes or continuous magma degassing. In both cases, decadal residence times are inferred from these 210Pb deficits. The young coeval volcanism on Malumalu and Vailulu'u suggests the Samoa hot spot is currently migrating to the northeast due to dynamic interaction with the Tonga slab.
  • Preprint
    Timescales of magmatic processes and eruption ages of the Nyiragongo volcanics from 238U-230Th-226Ra-210Pb disequilibria
    ( 2009-09-04) Chakrabarti, Ramananda ; Sims, Kenneth W. W. ; Basu, Asish R. ; Reagan, Mark K. ; Durieux, Jacques
    The silica-undersaturated Nyiragongo volcanics, located in the East African rift, have globally unique chemical compositions and unusually low viscosities, only higher than carbonatite lavas, for terrestrial silicate magmas. We report 238U-230Th-226Ra-210Pb series disequilibria in 13 recent and prehistoric lava samples from Nyiragongo including those from the 2002 flank eruption and a 2003 lava lake sample. (230Th/238U) ranges from 0.90- 0.97 in the recent lavas and from 0.94-1.09 in the prehistoric lavas. To explain the variable 230Th and 238U excesses in these lavas, we hypothesize that different processes with opposite effects in terms of fractionating Th/U in the mantle source are involved. These processes include: 1) low degree partial melting of a phlogopite-bearing mantle source (consistent with low K/Rb) with residual garnet (consistent with high chondrite-normalized Dy/Yb), to produce the observed 230Th excesses; and, 2) carbonate metasomatism for the 238U enrichment, consistent with high Zr/Hf in the Nyiragongo lavas. The Nyiragongo volcanics have higher (230Th/232Th) values than observed in most mantle-derived rocks, especially ocean-island basalts, suggesting that their mantle-source was affected by carbonate metasomatism less than 300 ka ago. Several Nyiragongo samples display significant 226Ra excesses implying rapid magma transport (less than 8 ka) from the mantle-source to the surface. Modeling the observed (226Ra/230Th) versus Zr/Hf correlation in the lavas indicates that the 2002, 2003 and a few pre-historic lavas incorporated 50-60% of a carbonate-metasomatized mantle source while the other prehistoric lavas show 10-22% contribution of this source. This result indicates that the Nyiragongo lavas were derived from a heterogeneous, non-uniformly carbonated mantle source. The 2002 lava shows (210Pb/226Ra) equilibrium, whereas the 2003 lava lake sample shows initial (210Pb/226Ra) < 1. The latter observation suggests that Nyiragongo magmas degas as they rise to the surface over years or decades before eruption. (210Pb/226Ra) equilibrium in the 2002 lava suggests that the 2002 magma may have stagnated for more than a decade before eruption. The high CO2 content, high emission rates, extreme fluidity, along with the inferred short residence time and our inferences of rapid magma transport and high eruptive frequency suggest that the volcanic hazards of Nyiragongo, both from lava flows and gas emissions, are higher than previously estimated.
  • Article
    Distribution of recycled crust within the upper mantle : insights from the oxygen isotope composition of MORB from the Australian-Antarctic Discordance
    (American Geophysical Union, 2009-12-03) Cooper, Kari M. ; Eiler, John M. ; Sims, Kenneth W. W. ; Langmuir, Charles H.
    Geochemical heterogeneity within the mantle has long been recognized through the diversity of trace element and radiogenic isotopic compositions of mantle-derived rocks, yet the specific origin, abundance, and distribution of enriched material within the mantle have been difficult to quantify. In particular, the origin of the distinctive geochemical characteristics of Indian mantle has been debated for decades. We present new laser fluorination oxygen isotope measurements of mid-ocean ridge basalt from the Australian-Antarctic Discordance (AAD), an area where a particularly abrupt transition occurs between Pacific-type mid-ocean ridge basalts (MORB) and Atlantic-type MORB. These data show no distinction in average δ18O between Pacific- and Atlantic-type MORB, indicating that the origin of Indian-type mantle cannot be attributed to the presence of pelagic sediment. The combined radiogenic isotope, δ18O, and trace element characteristics of Indian-type MORB at the AAD are consistent with contamination of the Indian upper mantle by lower crustal material. We also present a compilation of available laser fluorination δ18O data for MORB and use these data to evaluate the nature and percentage of enriched material within the upper mantle globally. Data for each ocean basin fit a normal distribution, with indistinguishable means and standard deviations, implying that the variation in δ18O of MORB reflects a stochastic process that operates similarly across all ocean basins. Monte Carlo simulations show that the mean and standard deviation of the MORB data are robust indicators of the mean and standard deviation of the parent distribution of data. Further, although some skewness in the data cannot be ruled out, Monte Carlo results are most consistent with a normal parent distribution. This similarity in characteristics of the δ18O data between ocean basins, together with correlations of δ18O with radiogenic isotope and trace element characteristics of subsets of the data, suggest that the upper mantle globally contains an average of ∼5–10% recycled crustal material and that the depleted mantle in the absence of this component would have δ18O of ∼5.25‰. The Monte Carlo simulations also suggest that additional oxygen isotope data may be used in the future to test the ability of geodynamical models to predict the physical distribution of enriched domains within the upper mantle.
  • Article
    Lower export production during glacial periods in the equatorial Pacific derived from (231Pa/230Th)xs,0 measurements in deep-sea sediments
    (American Geophysical Union, 2004-12-16) Pichat, Sylvain ; Sims, Kenneth W. W. ; Francois, Roger ; McManus, Jerry F. ; Leger, Susan Brown ; Albarede, Francis
    The (231Pa/230Th)xs,0 records obtained from two cores from the western (MD97-2138; 1°25′S, 146°24′E, 1900 m) and eastern (Ocean Drilling Program Leg 138 Site 849, 0°11.59′N, 110°31.18′W, 3851 m) equatorial Pacific display similar variability over the last 85,000 years, i.e., from isotopic stages 1 to 5a, with systematically higher values during the Holocene, isotopic stage 3, and isotopic stage 5a, and lower values, approaching the production rate ratio of the two isotopes (0.093), during the colder periods corresponding to isotopic stages 2 and 4. We have also measured the 230Th-normalized biogenic preserved and terrigenous fluxes, as well as major and trace elements concentrations, in both cores. The (231Pa/230Th)xs,0 results combined with the changes in preserved carbonate and opal fluxes at the eastern site indicate lower productivity in the eastern equatorial Pacific during glacial periods. The (231Pa/230Th)xs,0 variations in the western equatorial Pacific also seem to be controlled by productivity (carbonate and/or opal). The generally high (231Pa/230Th)xs,0 ratios (>0.093) of the profile could be due to opal and/or MnO2 in the sinking particles. The profiles of (231Pa/230Th)xs,0 and 230Th-normalized fluxes indicate a decrease in exported carbonate, and possibly opal, during isotopic stages 2 and 4 in MD97-2138. Using 230Th-normalized flux, we also show that sediments from the two cores were strongly affected by sediment redistribution by bottom currents suggesting a control of mass accumulation rates by sediment focusing variability.
  • Article
    Insight into volatile behavior at Nyamuragira volcano (D.R. Congo, Africa) through olivine-hosted melt inclusions
    (American Geophysical Union, 2011-10-04) Head, Elisabet M. ; Shaw, Alison M. ; Wallace, Paul J. ; Sims, Kenneth W. W. ; Carn, Simon A.
    We present new olivine-hosted melt inclusion volatile (H2O, CO2, S, Cl, F) and major element data from five historic eruptions of Nyamuragira volcano (1912, 1938, 1948, 1986, 2006). Host-olivine Mg#'s range from 71 to 84, with the exception of the 1912 sample (Mg# = 90). Inclusion compositions extend from alkali basalts to basanite-tephrites. Our results indicate inclusion entrapment over depths ranging from 3 to 5 km, which agree with independent estimates of magma storage depths (3–7 km) based on geophysical methods. Melt compositions derived from the 1986 and 2006 Nyamuragira tephra samples best represent pre-eruptive volatile compositions because these samples contain naturally glassy inclusions that underwent less post-entrapment modification than crystallized inclusions. Volatile concentrations of the 1986 and 2006 samples are as follows: H2O ranged from 0.6 to 1.4 wt %, CO2 from 350 to 1900 ppm, S from 1300 to 2400 ppm, Cl from 720 to 990 ppm, and F from 1500 to 2200 ppm. Based on FeOT and S data, we suggest that Nyamuragira magmas have higher fO2 (>NNO) than MORB. We estimate the total amount of sulfur dioxide (SO2) released from the 1986 (0.04 Mt) and 2006 (0.06 Mt) Nyamuragira eruptions using the petrologic method, whereby S contents in melt inclusions are scaled to erupted lava volumes. These amounts are significantly less than satellite-based SO2 emissions for the same eruptions (1986 = ∼1 Mt; 2006 = ∼2 Mt). Potential explanations for this observation are: (1) accumulation of a vapor phase within the magmatic system that is only released during eruptions, and/or (2) syn-eruptive gas release from unerupted magma.
  • Article
    Measurements of 220Rn and 222Rn and CO2 emissions in soil and fumarole gases on Mt. Etna volcano (Italy) : implications for gas transport and shallow ground fracture
    (American Geophysical Union, 2007-10-04) Giammanco, S. ; Sims, Kenneth W. W. ; Neri, M.
    Measurements of 220Rn and 222Rn activity and of CO2 flux in soil and fumaroles were carried out on Mount Etna volcano in 2005–2006, both in its summit area and along active faults on its flanks. We observe an empirical relationship between (220Rn/222Rn) and CO2 efflux. The higher the flux of CO2, the lower the ratio between 220Rn and 222Rn. Deep sources of gas are characterized by high 222Rn activity and high CO2 efflux, whereas shallow sources are indicated by high 220Rn activity and relatively low CO2 efflux. Excess 220Rn highlights sites of ongoing shallow rock fracturing that could be affected by collapse, as in the case of the rim of an active vent. Depletion both in 220Rn and in CO2 seems to be representative of residual degassing along recently active eruptive vents.
  • Preprint
    Geochemistry and mineralogy of the phonolite lava lake, Erebus volcano, Antarctica: 1972–2004 and comparison with older lavas
    ( 2007-10-14) Kelly, Peter J. ; Kyle, Philip R. ; Dunbar, Nelia W. ; Sims, Kenneth W. W.
    Mount Erebus, Antarctica, is a large (3794 m) alkaline open-conduit stratovolcano that hosts a vigorously convecting and persistently degassing lake of anorthoclase phonolite magma. The composition of the lake was investigated by analyzing glass and mineral compositions in lava bombs erupted between 1972 and 2004. Matrix glass, titanomagnetite, olivine, clinopyroxene, and fluor-apatite compositions are invariant and show that the magmatic temperature (~1000°C) and oxygen fugacity (ΔlogFMQ = -0.9) have been stable. Large temperature variations at the lake surface (ca. 400 - 500°C) are not reflected in mineral compositions. Anorthoclase phenocrysts up to 10 cm in length feature a restricted compositional range (An10.3-22.9Ab62.8-68.1Or11.4-27.2) with complex textural and compositional zoning. Anorthoclase textures and compositions indicate crystallization occurs at low degrees of effective undercooling. We propose shallow water exsolution causes crystallization to occur and shallow convection repeats this process multiple times, yielding extremely large anorthoclase crystals. Minor variations in eruptive activity from 1972 to 2004 are decoupled from magma compositions. The variations probably relate to changes in conduit geometry within the volcano and/or variable input of CO2-rich volatiles into the upper-level magma chamber from deeper in the system. Eleven bulk samples of phonolite lava from the summit plateau that range in age from 0 ± 4 ka to 17 ± 8 ka were analyzed for major and trace elements. Small compositional variations are controlled by anorthoclase content. The lavas are indistinguishable from modern bulk lava bomb compositions and demonstrate that Erebus volcano has been erupting lava and tephra from the summit region with the same bulk composition for ~17 ka.
  • Article
    Recent volcanic accretion at 9°N–10°N East Pacific Rise as resolved by combined geochemical and geological observations
    (John Wiley & Sons, 2013-08-01) Waters, Christopher L. ; Sims, Kenneth W. W. ; Soule, Samuel A. ; Blichert-Toft, Janne ; Dunbar, Nelia W. ; Plank, Terry ; Prytulak, Julie ; Sohn, Robert A. ; Tivey, Maurice A.
    The ridge crest at 9°N–10°N East Pacific Rise (EPR) is dominated by overlapping lava flows that have overflowed the axial summit trough and flowed off-axis, forming a shingle-patterned terrain up to ∼2–4 km on either side of the axial summit trough. In this study, we employ 230Th-226Ra dating methods, in conjunction with geochemistry and seafloor geological observations, in an effort to discern the stratigraphic relationships between adjacent flows. We measured major and trace elements and 87Sr/86Sr, 143Nd/144Nd, 176Hf/177Hf, and 238U-230Th-226Ra for lava glass samples collected from several flow units up to ∼2 km away from the axial summit trough on the ridge crest at 9°50′N EPR. Statistical analysis of the 238U-230Th-226Ra data indicates that all but one measured sample from these flows cannot be resolved from the zero-age population; thus, we cannot confidently assign model ages to samples for discerning stratigraphic relationships among flows. However, because groups of samples can be distinguished based on similarities in geochemical compositions, particularly incompatible element abundances with high precision-normalized variability such as U and Th, and because the range of compositions is much greater than that represented by samples from the 1991–1992 and 2005–2006 eruptions, we suggest that the dive samples represent 6–10 eruptive units despite indistinguishable model ages. Geochemical variability between individual flows with similar ages requires relatively rapid changes in parental melt composition over the past ∼2 ka, and this likely reflects variations in the relative mixing proportions of depleted and enriched melts derived from a heterogeneous mantle source.