Physical properties of sediment from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

Thumbnail Image
Date
2010-01-18
Authors
Winters, William J.
Walker, Michael
Hunter, Robert
Collett, Timothy S.
Boswell, Ray M.
Rose, Kelly K.
Waite, William F.
Torres, Marta E.
Patil, Shirish
Dandekar, Abhijit
Alternative Title
Date Created
Location
DOI
10.1016/j.marpetgeo.2010.01.008
Related Materials
Replaces
Replaced By
Keywords
Gas hydrate
Sagavanirktok Formation
Milne Point
Physical properties
Grain size
Mineralogy
Porosity
Permeability
Abstract
This study characterizes cored and logged sedimentary strata from the February 2007 BP Exploration Alaska, Department of Energy, U.S. Geological Survey (BPXA-DOE-USGS) Mount Elbert Gas Hydrate Stratigraphic Test Well on the Alaska North Slope (ANS). The physical-properties program analyzed core samples recovered from the well, and in conjunction with downhole geophysical logs, produced an extensive dataset including grain size, water content, porosity, grain density, bulk density, permeability, X-ray diffraction (XRD) mineralogy, nuclear magnetic resonance (NMR), and petrography. This study documents the physical property interrelationships in the well and demonstrates their correlation with the occurrence of gas hydrate. Gas hydrate (GH) occurs in three unconsolidated, coarse silt to fine sand intervals within the Paleocene and Eocene beds of the Sagavanirktok Formation: Unit D-GH (614.4 m–627.9 m); unit C-GH1 (649.8 m–660.8 m); and unit C-GH2 (663.2 m–666.3 m). These intervals are overlain by fine to coarse silt intervals with greater clay content. A deeper interval (unit B) is similar lithologically to the gas-hydrate-bearing strata; however, it is water-saturated and contains no hydrate. In this system it appears that high sediment permeability (k) is critical to the formation of concentrated hydrate deposits. Intervals D-GH and C-GH1 have average “plug” intrinsic permeability to nitrogen values of 1700 mD and 675 mD, respectively. These values are in strong contrast with those of the overlying, gas-hydrate-free sediments, which have k values of 5.7 mD and 49 mD, respectively, and thus would have provided effective seals to trap free gas. The relation between permeability and porosity critically influences the occurrence of GH. For example, an average increase of 4% in porosity increases permeability by an order of magnitude, but the presence of a second fluid (e.g., methane from dissociating gas hydrate) in the reservoir reduces permeability by more than an order of magnitude.
Description
This paper is not subject to U.S. copyright. The definitive version was published in Marine and Petroleum Geology 28 (2011): 361-380, doi:10.1016/j.marpetgeo.2010.01.008.
Embargo Date
Citation
Marine and Petroleum Geology 28 (2011): 361-380
Cruises
Cruise ID
Cruise DOI
Vessel Name