Energy and Geohazards

Permanent URI for this collection


Recent Submissions

Now showing 1 - 20 of 129
  • Article
    Categorizing active marine acoustic sources based on their potential to affect marine animals
    (MDPI, 2022-09-09) Ruppel, Carolyn D. ; Weber, Thomas C. ; Staaterman, Erica R. ; Labak, Stanley J. ; Hart, Patrick E.
    Marine acoustic sources are widely used for geophysical imaging, oceanographic sensing, and communicating with and tracking objects or robotic vehicles in the water column. Under the U.S. Marine Mammal Protection Act and similar regulations in several other countries, the impact of controlled acoustic sources is assessed based on whether the sound levels received by marine mammals meet the criteria for harassment that causes certain behavioral responses. This study describes quantitative factors beyond received sound levels that could be used to assess how marine species are affected by many commonly deployed marine acoustic sources, including airguns, high-resolution geophysical sources (e.g., multibeam echosounders, sidescan sonars, subbottom profilers, boomers, and sparkers), oceanographic instrumentation (e.g., acoustic doppler current profilers, split-beam fisheries sonars), and communication/tracking sources (e.g., acoustic releases and locators, navigational transponders). Using physical criteria about the sources, such as source level, transmission frequency, directionality, beamwidth, and pulse repetition rate, we divide marine acoustic sources into four tiers that could inform regulatory evaluation. Tier 1 refers to high-energy airgun surveys with a total volume larger than 1500 in3 (24.5 L) or arrays with more than 12 airguns, while Tier 2 covers the remaining low/intermediate energy airgun surveys. Tier 4 includes most high-resolution geophysical, oceanographic, and communication/tracking sources, which are considered unlikely to result in incidental take of marine mammals and therefore termed de minimis. Tier 3 covers most non-airgun seismic sources, which either have characteristics that do not meet the de minimis category (e.g., some sparkers) or could not be fully evaluated here (e.g., bubble guns, some boomers). We also consider the simultaneous use of multiple acoustic sources, discuss marine mammal field observations that are consistent with the de minimis designation for some acoustic sources, and suggest how to evaluate acoustic sources that are not explicitly considered here.
  • Article
    Oxygenation of a karst subterranean estuary during a tropical cyclone: mechanisms and implications for the carbon cycle
    (Association for the Sciences of Limnology and Oceanography, 2022-09-23) Brankovits, David ; Pohlman, John W. ; Lapham, Laura L.
    Seasonal precipitation affects carbon turnover and methane accumulation in karst subterranean estuaries, the region of coastal carbonate aquifers where hydrologic and biogeochemical processes regulate material exchange between the land and ocean. However, the impact that tropical cyclones exert on subsurface carbon cycling within karst landscapes is poorly understood. Here, we present 5‐month‐long hydrologic and chemical records from 1 and 2 km inland from the coastline within the Ox Bel Ha Cave System in the northeastern Yucatan Peninsula. The record encompasses wet and dry seasons and includes the impact of rainfall during the development of Tropical Storm Hanna in October 2014. Methane accumulated in highest concentrations at the inland site, especially during the wet season preceding the storm. Intense rainfall led to episodic increases in water level and salinity shifts at both sites, indicating a spatially widespread hydrologic response. The most profound storm effect was a ~ 0.8 mg L−1 pulse of dissolved oxygen that declined to zero within 2 weeks and corresponded with a reduction of methane. A positive shift in methane's stable carbon isotope content from −62.6‰ ± 0.6‰ before the storm to −44.0‰ ± 2.4‰ after the storm indicates microbial methane oxidation was a mechanism for the loss of groundwater methane. Post‐storm methane concentrations did not recover to pre‐storm levels during the observation period, suggesting tropical cyclones have long‐lasting (months) effects on the carbon cycle. Compared to seasonal effects, mixing and oxygen inputs during storm‐induced hydrologic forcing have an outsized biogeochemical influence within stratified coastal aquifers.
  • Article
    Long-wavelength propagation in fractured rock masses (3D Stress Field)
    (American Geophysical Union, 2022-09-05) Rached, Rached M. ; Garcia, Adrian V. ; Santamarina, J. Carlos
    Fractured rocks affect a wide range of natural processes and engineering systems. In most cases, the seismic characterization of fractured rock masses in the field involves wavelengths much longer than the fracture spacing; reproducing this condition in the laboratory is experimentally challenging. This experimental investigation explores the effect of fracture rock fabric and the 3D stress field on P wave propagation in the long‐wavelength regime using a large‐scale true triaxial device. P wave velocities increase with stress in the propagation direction and follow a power law of the form Vp = α(σ’/kPa)β; analyses and experimental results show that stress‐sensitive fracture stiffness and fracture density define the α‐factor and β‐exponent; conversely, long‐wavelength velocity versus stress data can be analyzed to identify the stress‐dependent fracture stiffness. P wave velocities exhibit hysteretic behavior caused by inelastic fracture deformation and fabric changes. During deviatoric loading, the P wave velocity decreases in the two constant‐stress directions due to the development of internal force chains and the ensuing three‐dimensional deformation. Following a load increment, time‐dependent contact deformations result in P wave velocity changes during the first several hours for the tested carbonate rocks; the asymptotic change in velocity is more pronounced for higher stress changes and stress levels. The fracture network geometry that defines the rock fabric acts as a low‐pass filter to wave propagation, so that wavelengths must be longer than two times the fracture spacing to propagate (Brillouin dispersion); the long‐wavelength velocity and the fracture spacing determine the cutoff frequency. Fabric anisotropy contributes to anisotropic low‐pass filtering effects in the rock mass.Plain Language SummarySeismic waves provide a convenient method to characterize fractured rock masses for various applications, from infrastructure engineering to reservoir characterization and production monitoring. But what do wave propagation parameters tell us about the rock mass? Results from this study show that the propagation velocity is a function of the confining stress and that both fracture geometry and stress anisotropy cause velocity anisotropy. We also found that only waves with a wavelength much longer than the spacing between fractures can traverse the medium (short wavelengths get trapped bouncing between fractures); therefore, a high‐frequency cutoff can be used to infer the fracture density in the direction of propagation.Key PointsLong‐wavelength P wave propagation velocity in fractured rocks increases with effective stress due to the stress‐dependent fracture stiffnessRelated phenomena include velocity‐stress hysteresis, fabric‐dependent low‐pass filtering, and creep‐induced stiffness changes in short time scalesLong‐wavelength P wave propagation parameters reflect both fabric and stress anisotropy
  • Article
    Mature diffuse tectonic block boundary revealed by the 2020 southwestern Puerto Rico seismic sequence
    (American Geophysical Union, 2022-02-08) ten Brink, Uri S. ; Vanacore, Elizabeth A. ; Fielding, Eric J. ; Chaytor, Jason D. ; Lopez-Venegas, Alberto M. ; Baldwin, William S. ; Foster, David S. ; Andrews, Brian D.
    Distributed faulting typically tends to coalesce into one or a few faults with repeated deformation. The progression of clustered medium-sized (≥Mw4.5) earthquakes during the 2020 seismic sequence in southwestern Puerto Rico (SWPR), modeling shoreline subsidence from InSAR, and sub-seafloor mapping by high-resolution seismic reflection profiles, suggest that the 2020 SWPR seismic sequence was distributed across several short intersecting strike-slip and normal faults beneath the insular shelf and upper slope of Guayanilla submarine canyon. Multibeam bathymetry map of the seafloor shows significant erosion and retreat of the shelf edge in the area of seismic activity as well as slope-parallel lineaments and submarine canyon meanders that typically develop over geological time. The T-axis of the moderate earthquakes further matches the extension direction previously measured on post early Pliocene (∼>3 Ma) faults. We conclude that although similar deformation has likely taken place in this area during recent geologic time, it does not appear to have coalesced during this time. The deformation may represent the southernmost part of a diffuse boundary, the Western Puerto Rico Deformation Boundary, which accommodates differential movement between the Puerto Rico and Hispaniola arc blocks. This differential movement is possibly driven by the differential seismic coupling along the Puerto Rico—Hispaniola subduction zone. We propose that the compositional heterogeneity across the island arc retards the process of focusing the deformation into a single fault. Given the evidence presented here, we should not expect a single large event in this area but similar diffuse sequences in the future.
  • Article
    Earthquake magnitude distributions on northern Caribbean faults from combinatorial optimization models
    (American Geophysical Union, 2021-10-11) Geist, Eric L. ; ten Brink, Uri S.
    On-fault earthquake magnitude distributions are calculated for northern Caribbean faults using estimates of fault slip and regional seismicity parameters. Integer programming, a combinatorial optimization method, is used to determine the optimal spatial arrangement of earthquakes sampled from a truncated Gutenberg-Richter distribution that minimizes the global misfit in slip rates on a complex fault system. Slip rates and their uncertainty on major faults are derived from a previously published GPS block model for the region, with fault traces determined from offshore geophysical mapping and previously published onshore studies. The optimal spatial arrangement of the sampled earthquakes is compared with the 500-year history of earthquake observations. Rupture segmentation of the subduction interface along the Hispaniola-Puerto Rico Trench (PRT) fault and seismic coupling on the PRT fault appear to exert the primary control over this spatial arrangement. Introducing a rupture barrier for the Hispaniola-PRT fault northwest of Mona Passage, based on geophysical and seismicity observations, and assigning a low slip rate of 2 mm/yr on the PRT fault are most consistent with historical earthquakes in the region. The addition of low slip-rate secondary faults as well as segmentation of the Hispaniola and Septentrional strike-slip fault improves the consistency with historical seismicity. An important observation from the modeling is that varying the slip rate on the PRT fault and different segmentation scenarios result in significant changes to the optimal magnitude distribution on faults farther away. In general, optimal on-fault magnitude distributions are more complex and inter-dependent than is typically assumed in probabilistic seismic hazard analysis and probabilistic tsunami hazard analysis.
  • Article
    Hydrate formation on marine seep bubbles and the implications for water column methane dissolution
    (American Geophysical Union, 2021-09-01) Fu, Xiaojing ; Waite, William F. ; Ruppel, Carolyn D.
    Methane released from seafloor seeps contributes to a number of benthic, water column, and atmospheric processes. At seafloor seeps within the methane hydrate stability zone, crystalline gas hydrate shells can form on methane bubbles while the bubbles are still in contact with the seafloor or as the bubbles begin ascending through the water column. These shells reduce methane dissolution rates, allowing hydrate-coated bubbles to deliver methane to shallower depths in the water column than hydrate-free bubbles. Here, we analyze seafloor videos from six deepwater seep sites associated with a diverse range of bubble-release processes involving hydrate formation. Bubbles that grow rapidly are often hydrate-free when released from the seafloor. As bubble growth slows and seafloor residence time increases, a hydrate coating can form on the bubble's gas-water interface, fully coating most bubbles within ∼10 s of the onset of hydrate formation at the seafloor. This finding agrees with water-column observations that most bubbles become hydrate-coated after their initial ∼150 cm of rise, which takes about 10 s. Whether a bubble is coated or not at the seafloor affects how much methane a bubble contains and how quickly that methane dissolves during the bubble's rise through the water column. A simplified model shows that, after rising 150 cm above the seafloor, a bubble that grew a hydrate shell before releasing from the seafloor will have ∼5% more methane than a bubble of initial equal volume that did not grow a hydrate shell after it traveled to the same height.
  • Article
    Limited mantle hydration by bending faults at the Middle America Trench
    (American Geophysical Union, 2020-12-15) Miller, Nathaniel C. ; Lizarralde, Daniel ; Collins, John A. ; Holbrook, W. Steven ; Van Avendonk, Harm J. A.
    Seismic anisotropy measurements show that upper mantle hydration at the Middle America Trench (MAT) is limited to serpentinization and/or water in fault zones, rather than distributed uniformly. Subduction of hydrated oceanic lithosphere recycles water back into the deep mantle, drives arc volcanism, and affects seismicity at subduction zones. Constraining the extent of upper mantle hydration is an important part of understanding many fundamental processes on Earth. Substantially reduced seismic velocities in tomography suggest that outer rise plate‐bending faults provide a pathway for seawater to rehydrate the slab mantle just prior to subduction. Estimates of outer‐rise hydration based on tomograms vary significantly, with some large enough to imply that, globally, subduction has consumed more than two oceans worth of water during the Phanerozoic. We found that, while the mean upper mantle wavespeed is reduced at the MAT outer rise, the amplitude and orientation of inherited anisotropy are preserved at depths >1 km below the Moho. At shallower depths, relict anisotropy is replaced by slowing in the fault‐normal direction. These observations are incompatible with pervasive hydration but consistent with models of wave propagation through serpentinized fault zones that thin to <100‐m in width at depths >1 km below Moho. Confining hydration to fault zones reduces water storage estimates for the MAT upper mantle from ∼3.5 wt% to <0.9 wt% H20. Since the intermediate thermal structure in the ∼24 Myr‐old MAT slab favors serpentinization, limited hydration suggests that fault mechanics are the limiting factor, not temperatures. Subducting mantle may be similarly dry globally.
  • Article
    Estimating the impact of seep methane oxidation on ocean pH and dissolved inorganic radiocarbon along the US Mid-Atlantic Bight
    (American Geophysical Union, 2020-12-23) Garcia-Tigreros, Fenix ; Leonte, Mihai ; Ruppel, Carolyn D. ; Ruiz-Angulo, Angel ; Joung, DongJoo ; Young, Benjamin ; Kessler, John D.
    Ongoing ocean warming can release methane (CH4) currently stored in ocean sediments as free gas and gas hydrates. Once dissolved in ocean waters, this CH4 can be oxidized to carbon dioxide (CO2). While it has been hypothesized that the CO2 produced from aerobic CH4 oxidation could enhance ocean acidification, a previous study conducted in Hudson Canyon shows that CH4 oxidation has a small short‐term influence on ocean pH and dissolved inorganic radiocarbon. Here we expand upon that investigation to assess the impact of widespread CH4 seepage on CO2 chemistry and possible accumulation of this carbon injection along 234 km of the U.S. Mid‐Atlantic Bight. Consistent with the estimates from Hudson Canyon, we demonstrate that a small fraction of ancient CH4‐derived carbon is being assimilated into the dissolved inorganic radiocarbon (mean fraction of 0.5 ± 0.4%). The areas with the highest fractions of ancient carbon coincide with elevated CH4 concentration and active gas seepage. This suggests that aerobic CH4 oxidation has a greater influence on the dissolved inorganic pool in areas where CH4 concentrations are locally elevated, instead of displaying a cumulative effect downcurrent from widespread groupings of CH4 seeps. A first‐order approximation of the input rate of ancient‐derived dissolved inorganic carbon (DIC) into the waters overlying the northern U.S. Mid‐Atlantic Bight further suggests that oxidation of ancient CH4‐derived carbon is not negligible on the global scale and could contribute to deepwater acidification over longer time scales.
  • Article
    Ideas and perspectives: a strategic assessment of methane and nitrous oxide measurements in the marine environment
    (European Geosciences Union, 2020-11-26) Wilson, Samuel T. ; Al-Haj, Alia N. ; Bourbonnais, Annie ; Frey, Claudia ; Fulweiler, Robinson W. ; Kessler, John D. ; Marchant, Hannah K. ; Milucka, Jana ; Ray, Nicholas E. ; Suntharalingam, Parvadha ; Thornton, Brett F. ; Upstill-Goddard, Robert C. ; Weber, Thomas S. ; Arévalo-Martínez, Damian L. ; Bange, Hermann W. ; Benway, Heather M. ; Bianchi, Daniele ; Borges, Alberto V. ; Chang, Bonnie X. ; Crill, Patrick M. ; del Valle, Daniela A. ; Farías, Laura ; Joye, Samantha B. ; Kock, Annette ; Labidi, Jabrane ; Manning, Cara C. ; Pohlman, John W. ; Rehder, Gregor ; Sparrow, Katy J. ; Tortell, Philippe D. ; Treude, Tina ; Valentine, David L. ; Ward, Bess B. ; Yang, Simon ; Yurganov, Leonid N.
    In the current era of rapid climate change, accurate characterization of climate-relevant gas dynamics – namely production, consumption, and net emissions – is required for all biomes, especially those ecosystems most susceptible to the impact of change. Marine environments include regions that act as net sources or sinks for numerous climate-active trace gases including methane (CH4) and nitrous oxide (N2O). The temporal and spatial distributions of CH4 and N2O are controlled by the interaction of complex biogeochemical and physical processes. To evaluate and quantify how these mechanisms affect marine CH4 and N2O cycling requires a combination of traditional scientific disciplines including oceanography, microbiology, and numerical modeling. Fundamental to these efforts is ensuring that the datasets produced by independent scientists are comparable and interoperable. Equally critical is transparent communication within the research community about the technical improvements required to increase our collective understanding of marine CH4 and N2O. A workshop sponsored by Ocean Carbon and Biogeochemistry (OCB) was organized to enhance dialogue and collaborations pertaining to marine CH4 and N2O. Here, we summarize the outcomes from the workshop to describe the challenges and opportunities for near-future CH4 and N2O research in the marine environment.
  • Article
    Along-margin variations in breakup volcanism at the Eastern North American Margin
    (American Geophysical Union, 2020-11-16) Greene, John A. ; Tominaga, Masako ; Miller, Nathaniel C.
    We model the magnetic signature of rift‐related volcanism to understand the distribution and volume of magmatic activity that occurred during the breakup of Pangaea and early Atlantic opening at the Eastern North American Margin (ENAM). Along‐strike variations in the amplitude and character of the prominent East Coast Magnetic Anomaly (ECMA) suggest that the emplacement of the volcanic layers producing this anomaly similarly varied along the margin. We use three‐dimensional magnetic forward modeling constrained by seismic interpretations to identify along‐margin variations in volcanic thickness and width that can explain the observed amplitude and character of the ECMA. Our model results suggest that the ECMA is produced by a combination of both first‐order (~600–1,000 km) and second‐order (~50–100 km) magmatic segmentation. The first‐order magmatic segmentation could have resulted from preexisting variations in crustal thickness and rheology developed during the tectonic amalgamation of Pangaea. The second‐order magmatic segmentation developed during continental breakup and likely influenced the segmentation and transform fault spacing of the initial, and modern, Mid‐Atlantic Ridge. These variations in magmatism show how extension and thermal weakening was distributed at the ENAM during continental breakup and how this breakup magmatism was related to both previous and subsequent Wilson cycle stages.
  • Article
    The role of premagmatic rifting in shaping a volcanic continental margin: An example from the Eastern North American Margin
    (American Geophysical Union, 2020-10-12) Lang, Guy ; ten Brink, Uri S. ; Hutchinson, Deborah R. ; Mountain, Gregory ; Schattner, Uri
    Both magmatic and tectonic processes contribute to the formation of volcanic continental margins. Such margins are thought to undergo extension across a narrow zone of lithospheric thinning (~100 km). New observations based on existing and reprocessed data from the Eastern North American Margin contradict this hypothesis. With ~64,000 km of 2‐D seismic data tied to 40 wells combined with published refraction, deep reflection, receiver function, and onshore drilling efforts, we quantified along‐strike variations in the distribution of rift structures, magmatism, crustal thickness, and early post‐rift sedimentation under the shelf of Baltimore Canyon Trough (BCT), Long Island Platform, and Georges Bank Basin (GBB). Results indicate that BCT is narrow (80–120 km) with a sharp basement hinge and few rift basins. The seaward dipping reflectors (SDR) there extend ~50 km seaward of the hinge line. In contrast, the GBB is wide (~200 km), has many syn‐rift structures, and the SDR there extend ~200 km seaward of the hinge line. Early post‐rift depocenters at the GBB coincide with thinner crust suggesting “uniform” thinning of the entire lithosphere. Models for the formation of volcanic margins do not explain the wide structure of the GBB. We argue that crustal thinning of the BCT was closely associated with late syn‐rift magmatism, whereas the broad thinning of the GBB segment predated magmatism. Correlation of these variations to crustal terranes of different compositions suggests that the inherited rheology determined the premagmatic response of the lithosphere to extension.
  • Article
    Focused fluid flow and methane venting along the Queen Charlotte fault, offshore Alaska (USA) and British Columbia (Canada)
    (Geological Society of America, 2020-11-02) Prouty, Nancy G. ; Brothers, Daniel S. ; Kluesner, Jared W. ; Barrie, J. Vaughn ; Andrews, Brian D. ; Lauer, Rachel M. ; Greene, H. Gary ; Conrad, James E. ; Lorenson, Thomas D. ; Law, Michael D. ; Sahy, Diana ; Conway, Kim ; McGann, Mary L. ; Dartnell, Peter
    Fluid seepage along obliquely deforming plate boundaries can be an important indicator of crustal permeability and influence on fault-zone mechanics and hydrocarbon migration. The ∼850-km-long Queen Charlotte fault (QCF) is the dominant structure along the right-lateral transform boundary that separates the Pacific and North American tectonic plates offshore southeastern Alaska (USA) and western British Columbia (Canada). Indications for fluid seepage along the QCF margin include gas bubbles originating from the seafloor and imaged in the water column, chemosynthetic communities, precipitates of authigenic carbonates, mud volcanoes, and changes in the acoustic character of seismic reflection data. Cold seeps sampled in this study preferentially occur along the crests of ridgelines associated with uplift and folding and between submarine canyons that incise the continental slope strata. With carbonate stable carbon isotope (δ13C) values ranging from −46‰ to −3‰, there is evidence of both microbial and thermal degradation of organic matter of continental-margin sediments along the QCF. Both active and dormant venting on ridge crests indicate that the development of anticlines is a key feature along the QCF that facilitates both trapping and focused fluid flow. Geochemical analyses of methane-derived authigenic carbonates are evidence of fluid seepage along the QCF since the Last Glacial Maximum. These cold seeps sustain vibrant chemosynthetic communities such as clams and bacterial mats, providing further evidence of venting of reduced chemical fluids such as methane and sulfide along the QCF.
  • Article
    Timescales and processes of methane hydrate formation and breakdown, with application to geologic systems
    (American Geophysical Union, 2020-06-04) Ruppel, Carolyn D. ; Waite, William F.
    Gas hydrate is an ice‐like form of water and low molecular weight gas stable at temperatures of roughly −10°C to 25°C and pressures of ~3 to 30 MPa in geologic systems. Natural gas hydrates sequester an estimated one sixth of Earth's methane and are found primarily in deepwater marine sediments on continental margins, but also in permafrost areas and under continental ice sheets. When gas hydrate is removed from its stability field, its breakdown has implications for the global carbon cycle, ocean chemistry, marine geohazards, and interactions between the geosphere and the ocean‐atmosphere system. Gas hydrate breakdown can also be artificially driven as a component of studies assessing the resource potential of these deposits. Furthermore, geologic processes and perturbations to the ocean‐atmosphere system (e.g., warming temperatures) can cause not only dissociation, but also more widespread dissolution of hydrate or even formation of new hydrate in reservoirs. Linkages between gas hydrate and disparate aspects of Earth's near‐surface physical, chemical, and biological systems render an assessment of the rates and processes affecting the persistence of gas hydrate an appropriate Centennial Grand Challenge. This paper reviews the thermodynamic controls on methane hydrate stability and then describes the relative importance of kinetic, mass transfer, and heat transfer processes in the formation and breakdown (dissociation and dissolution) of gas hydrate. Results from numerical modeling, laboratory, and some field studies are used to summarize the rates of hydrate formation and breakdown, followed by an extensive treatment of hydrate dynamics in marine and cryospheric gas hydrate systems.
  • Article
    Numerical characterization of cohesive and non-cohesive 'sediments' under different consolidation states using 3D DEM triaxial experiments
    (MDPI, 2020-10-05) Elyashiv, Hadar ; Bookman, Revital ; Siemann, Lennart ; ten Brink, Uri S. ; Huhn, Katrin
    The Discrete Element Method has been widely used to simulate geo-materials due to time and scale limitations met in the field and laboratories. While cohesionless geo-materials were the focus of many previous studies, the deformation of cohesive geo-materials in 3D remained poorly characterized. Here, we aimed to generate a range of numerical ‘sediments’, assess their mechanical response to stress and compare their response with laboratory tests, focusing on differences between the micro- and macro-material properties. We simulated two endmembers—clay (cohesive) and sand (cohesionless). The materials were tested in a 3D triaxial numerical setup, under different simulated burial stresses and consolidation states. Variations in particle contact or individual bond strengths generate first order influence on the stress–strain response, i.e., a different deformation style of the numerical sand or clay. Increased burial depth generates a second order influence, elevating peak shear strength. Loose and dense consolidation states generate a third order influence of the endmember level. The results replicate a range of sediment compositions, empirical behaviors and conditions. We propose a procedure to characterize sediments numerically. The numerical ‘sediments’ can be applied to simulate processes in sediments exhibiting variations in strength due to post-seismic consolidation, bioturbation or variations in sedimentation rates.
  • Article
    Focused fluid flow along the Nootka fault zone and continental slope, explorer-Juan de Fuca Plate Boundary
    (American Geophysical Union, 2020-08-07) Riedel, Michael ; Rohr, Kristin Marie Michener ; Spence, George D. ; Kelley, Deborah S. ; Delaney, John R. ; Lapham, Laura L. ; Pohlman, John W. ; Hyndman, Roy D. ; Willoughby, Ele C.
    Geophysical and geochemical data indicate there is abundant fluid expulsion in the Nootka fault zone (NFZ) between the Juan de Fuca and Explorer plates and the Nootka continental slope. Here we combine observations from >20 years of investigations to demonstrate the nature of fluid‐flow along the NFZ, which is the seismically most active region off Vancouver Island. Seismicity reaching down to the upper mantle is linked to near‐seafloor manifestation of fluid flow through a network of faults. Along the two main fault traces, seismic reflection data imaged bright spots 100–300 m below seafloor that lie above changes in basement topography. The bright spots are conformable to sediment layering, show opposite‐to‐seafloor reflection polarity, and are associated with frequency reduction and velocity push‐down indicating the presence of gas in the sediments. Two seafloor mounds ~15 km seaward of the Nootka slope are underlain by deep, nonconformable high‐amplitude reflective zones. Measurements in the water column above one mound revealed a plume of warm water, and bottom‐video observations imaged hydrothermal vent system biota. Pore fluids from a core at this mound contain predominately microbial methane (C1) with a high proportion of ethane (C2) yielding C1/C2 ratios <500 indicating a possible slight contribution from a deep source. We infer the reflective zones beneath the two mounds are basaltic intrusions that create hydrothermal circulation within the overlying sediments. Across the Nootka continental slope, gas hydrate‐related bottom‐simulating reflectors are widespread and occur at depths indicating heat flow values of 80–90 mW/m2.
  • Article
    Gas hydrates in sustainable chemistry
    (Royal Society of Chemistry, 2020-06-22) Hassanpouryouzband, Aliakbar ; Joonaki, Edris ; Farahani, Mehrdad Vasheghani ; Takeya, Satoshi ; Ruppel, Carolyn D. ; Yang, Jinhai ; English, Niall J. ; Schicks, Judith M. ; Edlmann, Katriona ; Mehrabian, Hadi ; Aman, Zachary M. ; Tohidia, Bahman
    Gas hydrates have received considerable attention due to their important role in flow assurance for the oil and gas industry, their extensive natural occurrence on Earth and extraterrestrial planets, and their significant applications in sustainable technologies including but not limited to gas and energy storage, gas separation, and water desalination. Given not only their inherent structural flexibility depending on the type of guest gas molecules and formation conditions, but also the synthetic effects of a wide range of chemical additives on their properties, these variabilities could be exploited to optimise the role of gas hydrates. This includes increasing their industrial applications, understanding and utilising their role in Nature, identifying potential methods for safely extracting natural gases stored in naturally occurring hydrates within the Earth, and for developing green technologies. This review summarizes the different properties of gas hydrates as well as their formation and dissociation kinetics and then reviews the fast-growing literature reporting their role and applications in the aforementioned fields, mainly concentrating on advances during the last decade. Challenges, limitations, and future perspectives of each field are briefly discussed. The overall objective of this review is to provide readers with an extensive overview of gas hydrates that we hope will stimulate further work on this riveting field.
  • Article
    Surface methane concentrations along the mid-Atlantic bight driven by aerobic subsurface production rather than seafloor gas seeps.
    (American Geophysical Union, 2020-04-04) Leonte, Mihai ; Ruppel, Carolyn D. ; Ruiz-Angulo, Angel ; Kessler, John D.
    Relatively minor amounts of methane, a potent greenhouse gas, are currently emitted from the oceans to the atmosphere, but such methane emissions have been hypothesized to increase as oceans warm. Here, we investigate the source, distribution, and fate of methane released from the upper continental slope of the U.S. Mid‐Atlantic Bight, where hundreds of gas seeps have been discovered between the shelf break and ~1,600 m water depth. Using physical, chemical, and isotopic analyses, we identify two main sources of methane in the water column: seafloor gas seeps and in situ aerobic methanogenesis which primarily occurs at 100–200 m depth in the water column. Stable isotopic analyses reveal that water samples collected at all depths were significantly impacted by aerobic methane oxidation, the dominant methane sink in this region, with the average fraction of methane oxidized being 50%. Due to methane oxidation in the deeper water column, below 200 m depth, surface concentrations of methane are influenced more by methane sources found near the surface (0–10 m depth) and in the subsurface (10–200 m depth), rather than seafloor emissions at greater depths.
  • Article
    Semi-automated bathymetric spectral decomposition delineates the impact of mass wasting on the morphological evolution of the continental slope, offshore Israel
    (Wiley, 2019-10-31) Gadol, Omri ; Tibor, Gideon ; ten Brink, Uri S. ; Hall, John K. ; Groves‐Gidney, Gavrielle ; Bar‐Am, Gideon ; Hübscher, Christian ; Makovsky, Yizhaq
    Understanding continental‐slope morphological evolution is essential for predicting basin deposition. However, separating the imprints and chronology of different seafloor shaping processes is difficult. This study explores the utility of bathymetric spectral decomposition for separating and characterizing the variety of interleaved seafloor imprints of mass wasting, and clarifying their role in the morphological evolution of the southeastern Mediterranean Sea passive‐margin slope. Bathymetric spectral decomposition, integrated with interpretation of seismic profiles, highlights the long‐term shape of the slope and separates the observed mass transport elements into several genetic groups: (1) a series of ~25 km wide, now‐buried slide scars and lobes; (2) slope‐parallel bathymetric scarps representing shallow faults; (3) slope‐perpendicular, open slope slide scars; (4) bathymetric roughness representing debris lobes; (5) slope‐confined gullies. Our results provide a multi‐scale view of the interplay between sediment transport, mass transport and shallow faulting in the evolution of the slope morphology. The base of the slope and focused disturbances are controlled by ~1 km deep salt retreat, and mimic the Messinian base of slope. The top of the open‐slope is delimited by faults, accommodating internal collapse of the margin. The now‐buried slides were slope‐confined and presumably cohesive, and mostly nucleated along the upper‐slope faults. Sediment accumulations, infilling the now‐buried scars, generated more recent open‐slope slides. These latter slides transported ~10 km3 of sediments, depositing a significant fraction (~3 m in average) of the sediments along the base of the studied slope during the past < 50 ka. South to north decrease in the volume of the open‐slope slides highlight their role in counterbalancing the northwards diminishing sediment supply and helping to maintain a long‐term steady‐state bathymetric profile. The latest phase slope‐confined gullies were presumably created by channelling of bottom currents into slide‐scar depressions, possibly establishing incipient canyon headword erosion.
  • Article
    Introduction to special issue on gas hydrate in porous media: linking laboratory and field-scale phenomena
    (American Geophysical Union, 2019-07-10) Ruppel, Carolyn D. ; Lee, Joo Yong ; Pecher, Ingo A.
    The proliferation of drilling expeditions focused on characterizing natural gas hydrate as a potential energy resource has spawned widespread interest in gas hydrate reservoir properties and associated porous media phenomena. Between 2017 and 2019, a Special Section of this journal compiled contributed papers elucidating interactions between gas hydrate and sediment based on laboratory, numerical modeling, and field studies. Motivated mostly by field observations in the northern Gulf of Mexico and offshore Japan, several papers focus on the mechanisms for gas hydrate formation and accumulation, particularly with vapor phase gas, not dissolved gas, as the precursor to hydrate. These studies rely on numerical modeling or laboratory experiments using sediment packs or benchtop micromodels. A second focus of the Special Section is the role of fines in inhibiting production of gas from methane hydrate, controlling the distribution of hydrate at a pore scale, and influencing the bulk behavior of seafloor sediments. Other papers fill knowledge gaps related to the physical properties of hydrate‐bearing sediments and advance new approaches in coupled thermal‐mechanical modeling of these sediments during hydrate dissociation. Finally, one study addresses the long‐standing question about the fate of methane hydrate at the molecular level when CO2 is injected into natural reservoirs under hydrate‐forming conditions.
  • Article
    Heat flow in the Western Arctic Ocean (Amerasian Basin)
    (American Geophysical Union, 2019-07-10) Ruppel, Carolyn D. ; Lachenbruch, Arthur H. ; Hutchinson, Deborah R. ; Munroe, Robert J. ; Mosher, David C.
    From 1963 to 1973 the U.S. Geological Survey measured heat flow at 356 sites in the Amerasian Basin (Western Arctic Ocean) from a drifting ice island (T‐3). The resulting measurements, which are unevenly distributed on Alpha‐Mendeleev Ridge and in Canada and Nautilus Basins, greatly expand available heat flow data for the Arctic Ocean. Average T‐3 heat flow is ~54.7 ± 11.3 mW/m2, and Nautilus Basin is the only well‐surveyed area (~13% of data) with significantly higher average heat flow (63.8 mW/m2). Heat flow and bathymetry are not correlated at a large scale, and turbiditic surficial sediments (Canada and Nautilus Basins) have higher heat flow than the sediments that blanket the Alpha‐Mendeleev Ridge. Thermal gradients are mostly near‐linear, implying that conductive heat transport dominates and that near‐seafloor sediments are in thermal equilibrium with overlying bottom waters. Combining the heat flow data with modern seismic imagery suggests that some of the observed heat flow variability may be explained by local changes in lithology or the presence of basement faults that channel circulating seawater. A numerical model that incorporates thermal conductivity variations along a profile from Canada Basin (thick sediment on mostly oceanic crust) to Alpha Ridge (thin sediment over thick magmatic units associated with the High Arctic Large Igneous Province) predicts heat flow slightly lower than that observed on Alpha Ridge. This, along with other observations, implies that circulating fluids modulate conductive heat flow and contribute to high variability in the T‐3 data set.