Hunter
Robert
Hunter
Robert
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
ArticlePhysical properties of sediment from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope(Elsevier B.V., 2010-01-18) Winters, William J. ; Walker, Michael ; Hunter, Robert ; Collett, Timothy S. ; Boswell, Ray M. ; Rose, Kelly K. ; Waite, William F. ; Torres, Marta E. ; Patil, Shirish ; Dandekar, AbhijitThis study characterizes cored and logged sedimentary strata from the February 2007 BP Exploration Alaska, Department of Energy, U.S. Geological Survey (BPXA-DOE-USGS) Mount Elbert Gas Hydrate Stratigraphic Test Well on the Alaska North Slope (ANS). The physical-properties program analyzed core samples recovered from the well, and in conjunction with downhole geophysical logs, produced an extensive dataset including grain size, water content, porosity, grain density, bulk density, permeability, X-ray diffraction (XRD) mineralogy, nuclear magnetic resonance (NMR), and petrography. This study documents the physical property interrelationships in the well and demonstrates their correlation with the occurrence of gas hydrate. Gas hydrate (GH) occurs in three unconsolidated, coarse silt to fine sand intervals within the Paleocene and Eocene beds of the Sagavanirktok Formation: Unit D-GH (614.4 m–627.9 m); unit C-GH1 (649.8 m–660.8 m); and unit C-GH2 (663.2 m–666.3 m). These intervals are overlain by fine to coarse silt intervals with greater clay content. A deeper interval (unit B) is similar lithologically to the gas-hydrate-bearing strata; however, it is water-saturated and contains no hydrate. In this system it appears that high sediment permeability (k) is critical to the formation of concentrated hydrate deposits. Intervals D-GH and C-GH1 have average “plug” intrinsic permeability to nitrogen values of 1700 mD and 675 mD, respectively. These values are in strong contrast with those of the overlying, gas-hydrate-free sediments, which have k values of 5.7 mD and 49 mD, respectively, and thus would have provided effective seals to trap free gas. The relation between permeability and porosity critically influences the occurrence of GH. For example, an average increase of 4% in porosity increases permeability by an order of magnitude, but the presence of a second fluid (e.g., methane from dissociating gas hydrate) in the reservoir reduces permeability by more than an order of magnitude.
-
PreprintExamination of core samples from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope : effects of retrieval and preservation( 2009-10) Kneafsey, Timothy J. ; Lu, Hailong ; Winters, William J. ; Boswell, Ray M. ; Hunter, Robert ; Collett, Timothy S.Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.