Wave and roller transformation over barred bathymetry
Wave and roller transformation over barred bathymetry
Date
2024-05-04
Authors
Chen, Jinshi
Raubenheimer, Britt
Elgar, Steve
Raubenheimer, Britt
Elgar, Steve
Linked Authors
Files
Alternative Title
Citable URI
As Published
Date Created
Location
DOI
10.1029/2023jc020413
Related Materials
Replaces
Replaced By
Keywords
Rollers
Wave breaking
Surfzone
Setup
RANS model
Wave breaking
Surfzone
Setup
RANS model
Abstract
The cross-shore transformation of breaking-wave roller momentum and energy on observed barred surfzone bathymetry is investigated with a two-phase Reynolds Averaged Navier Stokes model driven with measured incident waves. Modeled wave spectra, wave heights, and wave-driven increases in the mean water level (setup) agree well with field observations along transects extending from 5-m water depth to the shoreline. Consistent with prior results the roller forcing contributes 50%–60% to the setup, whereas the advective terms contribute ∼20%, with the contribution of bottom stress largest (up to 20%) for shallow sandbar crest depths. The model simulations suggest that an energy-flux balance between wave dissipation, roller energy, and roller dissipation is accurate. However, as little as 70% of the modeled wave energy ultimately dissipated by breaking was first transferred from the wave to the roller. Furthermore, of the energy transferred to the roller, 15%–25% is dissipated by turbulence in the water column below the roller, with the majority of energy dissipated in the aerated region or near the roller-surface interface. The contributions of turbulence to the momentum balance are sensitive to the parameterized turbulent anisotropy, which observations suggest increases with increasing turbulence intensity. Here, modeled turbulent kinetic energy dissipation decreases with increasing depth of the sandbar crest, possibly reflecting a change from plunging (on the steeper offshore slope of the bar) to spilling breakers (over the flatter bar crest and trough). Thus, using a variable roller front slope in the roller-wave energy flux balance may account for these variations in breaker type.
Description
© The Author(s), 2024. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chen, J., Raubenheimer, B., & Elgar, S. (2024). Wave and roller transformation over barred bathymetry. Journal of Geophysical Research: Oceans, 129(5), e2023JC020413, https://doi.org/10.1029/2023jc020413.
Embargo Date
Citation
Chen, J., Raubenheimer, B., & Elgar, S. (2024). Wave and roller transformation over barred bathymetry. Journal of Geophysical Research: Oceans, 129(5), e2023JC020413.